Skip to main content
Log in

Rock black fungi: excellence in the extremes, from the Antarctic to space

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

This work focuses on rock-inhabiting fungi (RIF) of Antarctic rocky deserts, considered the closest to a possible Martian habitat, as the best example of adaptation to the extremes. The study of RIF ecophysiology, resistance and adaptation provides tools that shed light on the evolution of extremophily. These studies also help define the actual limits for life and provide insight for investigating its existence beyond our planet. The scientific results obtained from over 20 years of research on the biodiversity, phylogeny and evolution toward extremotolerance reviewed here demonstrate how these fascinating organisms can withstand conditions well beyond those in their natural environment. A final focus is given on results and perspectives arising from a recent proteomic approach, and from astrobiological experiments and their significance for future space exploration. These studies demonstrate that Antarctic RIF offer an excellent opportunity to investigate many basic, but also applicative areas of research on extremophily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Åkerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11:545–555

    Article  PubMed  PubMed Central  Google Scholar 

  • Andersen DT, McKay CP, Wharton RA, Rummel JD (1992) Testing a Mars science outpost in the Antarctic dry valleys. Adv Space Res 12:205–209

    Article  CAS  PubMed  Google Scholar 

  • Askin RA (1992) Late Cretaceous–early Tertiary Antarctic outcrop evidence for past vegetation and climates. The Antarctic Paleoenvironment: a perspective on global change: Part One 61–74

  • Baker BJ, Lutz MA, Dawson SC, Bond PL, Banfield JF (2004) Metabolically active eukaryotic communities in extremely acidic mine drainage. Appl Environ Microbiol 70:6264–6271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • COSPAR (2011) COSPAR Planetary Protection Policy (20 Oct 2002, as amended 24 Mar 2011), COSPAR, Paris. Available online at http://cosparhq.cnes.fr/Scistr/PPPolicy%20%2824-Mar2011%29.pdf

  • Dadachova E, Casadevall A (2008) Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin. Curr Opin Microbiol 11:525–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dadachova E, Bryan RA, Huang X, Moadel T, Schweizer AD, Aisen P, Nosanchuk JD, Casadevall A (2007) Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PLoS One 5:1–13

    Google Scholar 

  • de los Ríos A, Wierzchos J, Ascaso C (2014) The lithic microbial ecosystems of Antarctica’s McMurdo Dry Valleys. Antarct Sci 26:459–477

    Article  Google Scholar 

  • de los Ríos A, Wierzchos J, Sancho LG, Ascaso C (2003) Acid microenvironments in microbial biofilms of Antarctic endolithic microecosystems. Eviron Microbiol 5:231–237

    Article  Google Scholar 

  • de Vera JP, Böttger U, de la Torre Noetzel R, Sánchez FJ, Grunow D, Schmitz N, Lange C, Hübers HW, Billi D, Baqué M, Rettberg P, Rabbow E, Reitz G, Berger T, Möller R, Bohmeier M, Horneck G, Westall F, Jänchen J, Fritz J, Meyer C, Onofri S, Selbmann L, Zucconi L, Kozyrovska N, Leya T, Foing B, Demets R, Cockell CS, Bryce C, Wagner D, Serrano P, Howell GME, Joshi J, Huwe B, Ehrenfreund P, Elsaesser A, Ott S, Meessen J, Feyh N, Szewzyk U, Jaumann R, Spohn T (2012) Supporting Mars exploration: BIOMEX in Low Earth Orbit and further astrobiological studies on the Moon using Raman and PanCam technology. Planet Space Sci 74:103–110

    Article  Google Scholar 

  • Doran PT, McKay CP, Clow GD, Dana GL (2002) Valley floor climate observations from the McMurdo Dry Valleys. Antarctica 1986–2000. Geophys Res 107:4772

    Article  Google Scholar 

  • Egidi E, de Hoog GS, Isola D, Onofri S, Quaedvlieg W, de Vries M, Verkley GJM, Stielow JB, Zucconi L, Selbmann L (2014) Phylogeny and taxonomy of meristematic rock-inhabiting black fungi in the Dothideomycetes based on multi-locus phylogenies. Fungal Divers 65:127–165

    Article  Google Scholar 

  • Fountain AG, Dana GL, Lewis KJ, Vaughn BH, McKnight DM (1998) Glaciers of the McMurdo Dry Valleys, Southern Victoria Land, Antarctica. In: Priscu JC (ed) Ecosystem Dynamics in a Polar Desert. American Geophysical Union, Antarctic Research Series Washington, D.C, pp 65–75

    Google Scholar 

  • Fountain AG, Nylen TH, Monagh A, Basagic HJ, Bromwich D (2010) Snow in the McMurdo Dry Valleys, Antarctica. Int J Climatol 30:633–642

    Google Scholar 

  • Francis JE, Poole I (2002) Cretaceous and early Tertiary climates of Antarctica: evidence from fossil wood. Palaeogeogr Palaeocl 182:47–64

    Article  Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053

    Article  CAS  PubMed  Google Scholar 

  • Friedmann EI, Ocampo-Friedmann R (1976) Endolithic blue-green algae in the dry valleys: primary producers in the Antarctic desert ecosystem. Science 193:1247–1249

    Article  CAS  PubMed  Google Scholar 

  • Friedmann EI, Hua M, Ocampo-Friedmann R (1988) Cryptoendolithic Lichen and Cyanobacterial Communities of the Ross Desert, Antarctica. Polarforschung 58:251–259

    CAS  PubMed  Google Scholar 

  • Gadd GL, de Rome L (1988) Biosorption of copper by fungal melanin. Appl Microbiol Biotechnol 29:610–617

    Article  CAS  Google Scholar 

  • Golubic S, Friedmann IE, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Res 51:475–478

    Google Scholar 

  • Gorbushina AA (2007) Life on the rocks. Environ Microbiol 9:1613–1631

    Article  CAS  PubMed  Google Scholar 

  • Gorbushina AA, Whitehead K, Dornieden T, Niesse A, Schulte A, Hedges JI (2003) Black fungal colonies as units of survival: hyphal mycosporines synthesized by rock-dwelling micro-colonial fungi. Can J Bot 81:131–138

    Article  CAS  Google Scholar 

  • Gorbushina AA, Kotlova ER, Sherstneva OA (2008) Cellular responses of microcolonial rock fungi to long-term desiccation and subsequent rehydration. Stud Mycol 61:91–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gostinčar C, Grube M, Gunde-Cimerman N (2011) Evolution of fungal pathogens in domestic environments? Fungal Biol 115:1008–1018

    Article  PubMed  Google Scholar 

  • Gueidan C, Ruibal C, de Hoog GS, Gorbushina AA, Untereiner WA, Lutzoni F (2008) A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages. Stud Mycol 61:111–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gueidan C, Ruibal C, de Hoog GS, Schneider H (2011) Rock-inhabiting fungi originated during periods of dry climate in the late Devonian and middle Triassic. Fungal Biol 115:987–996

    Article  PubMed  Google Scholar 

  • Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitaš A (2000) Hypersaline waters in salterns: natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240

    CAS  Google Scholar 

  • Harutyunyan S, Muggia L, Grube M (2008) Black fungi in lichens from seasonally arid habitats. Stud Mycol 61:83–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmann GE, Buckley BA, Airaksinen S, Keen JE, Somero GN (2000) Heat-shock protein expression is absent in the Antarctic Fish Trematomus bernacchii (Family Nototheniidae). J Exp Biol 203:2331–2339

    CAS  PubMed  Google Scholar 

  • Isola D, Marzban G, Selbmann L, Onofri S, Laimer M, Sterflinger K (2011) Sample preparation and 2- DE procedure for protein expression profiling of black microclonial fungi. Fungal Biology 10:971–977. doi:10.1016/j.funbio.2011.03.001

    Article  Google Scholar 

  • Isola D, Selbmann L, de Hoog GS, Fenice M, Onofri S, Prenafeta-Boldú FX, Zucconi L (2013) Isolation and screening of black fungi as degraders of volatile aromatic hydrocarbons. Mycopathologia 175:369–379. doi:10.1007/s11046-013-9635-2

    Article  PubMed  Google Scholar 

  • Kogej T, Wheeler MH, Lanisnik-Rižner T, Gunde-Cimermann N (2003) Inhibition of DHN-melanin biosynthesis by tricyclazole in Hortaea wernekii. In: Wolf K, Breunig G, Barth G (eds) Non conventional yeasts in genetics, biochemistry and biotechnology. Springer, Berlin Heidelberg New York, pp 143–148

    Chapter  Google Scholar 

  • Kogej T, Wheeler MH, Rizˇner TL, Gunde-Cimerman N (2004) Evidence for 1,8-dihydroxy-naphthalene melanin in three halophilic black yeasts grown under saline and non-saline conditions. FEMS Microbiol Lett 232:203–209

    Article  CAS  PubMed  Google Scholar 

  • Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92:2177–2186

    Article  CAS  PubMed  Google Scholar 

  • Marzban G, Tesei D, Sterflinger K (2013) A Review beyond the borders: Proteomics of microclonial black fungi and black yeasts. Nat Sci 5:640–645. doi:10.4236/ns.2013.55079

    Google Scholar 

  • Miller RW (2005) Viewpoint: Millennial Fever, Extremophiles, NASA, Astroenvironmentalism, and Planetary Protection. Electron Green J 1:1–9

    Google Scholar 

  • Moeller R, Schuerger AC, Reitz G, Nicholson WL (2012) Protective role of spore structural components in determining Bacillus sublitis spore resistance to simulated Mars surface conditions. Appl Environ Microbiol 87:8849–8853

    Article  Google Scholar 

  • Moses V, Holm-Hansen O, Calvin M (1959) Non photosynthetic fixation of carbon dioxide by three microorganisms. J Bacteriol 77:70–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advantage. Mutat Res 1:2–9

    Article  Google Scholar 

  • Mustard JF, Murchie SL, Pelkey SM, Ehlmann BL, Milliken RE, Grant JA, Bibring J-P, Poulet F, Bishop J, Noe Dobrea E, Roach L, Seelos F, Arvidson RE, Wiseman S, Green R, Hash C, Humm D, Malaret E, McGovern JA, Seelos K, Clancy T, Clark R, Marais DD, Izenberg N, Knudson A, Langevin Y, Martin T, McGuire R, Morris M, Robinson T, Roush M, Smith G, Swayze P, Taylor H, Titus T, Wolff M (2008) Hydrated silicate minerals on Mars observed by the Mars reconnaissance orbiter CRISM instrument. Nature 454:305–309

    Article  CAS  PubMed  Google Scholar 

  • Nienow JA, Friedmann EI (1993) Terrestrial lithophytic (rock) communities. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 343–412

    Google Scholar 

  • Onofri S, Selbmann L, Zucconi L, Pagano S (2004) Antarctic microfungi as models for exobiology. Planet Space Sci 52:229–237

    Article  Google Scholar 

  • Onofri S, Zucconi L, Tosi S (2006) Continental Antarctic Fungi. IHW-Verlag, Eching

    Google Scholar 

  • Onofri S, Zucconi L, Selbmann L, de Hoog GS, de los Rios A, Ruisi S, Grube M (2007a) Fungal Association at the cold edge of life. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments; cellular origin, life in extreme habitats and astrobiology. Springer-Verlag, Berlin, p 450 (pp 739–757. ISSN: 1566–0400)

    Google Scholar 

  • Onofri S, Selbmann L, de Hoog GS, Grube M, Barreca D, Ruisi S, Zucconi L (2007b) Evolution and adaptation of fungi at boundaries of life. Adv Space Res 40:1657–1664

    Article  Google Scholar 

  • Onofri S, Barreca D, Selbmann L, Isola D, Rabbow E, Horneck G, de Vera JPP, Hatton J, Zucconi L (2008) Resistance of Antarctic black fungi and cryptoendolithic communities to simulated space and Mars conditions. Stud Mycol 61:99–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onofri S, Selbmann L, Barreca D, Isola D, Zucconi L (2009) Do fungi survive under actual space conditions? Searching for evidence in favour of lithopanspermia. Plant Biosyst 143:S85–S87

    Article  Google Scholar 

  • Onofri S, de la Torre R, de Vera JP, Ott S, Zucconi L, Selbmann L, Scalzi G, Venkateswaran K, Rabbow E, Horneck G (2012) Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology 12:508–516

    Article  PubMed  Google Scholar 

  • Palmer RJ, Friedman EI (1988) Incorporation of inorganic carbon by Antarctic cryptoendolithic fungi. Polarforschung 58:189–191

    PubMed  Google Scholar 

  • Plemenitaš A, Vaupotič T, Lenassi M, Kogej T, Gunde-Cimerman N (2008) Adaptation of extremely halotolerant black yeast Hortaea werneckii to increased osmolarity: a molecular perspective at a glance. Stud Mycol 61:67–75

    Article  PubMed  PubMed Central  Google Scholar 

  • Quaedvlieg W, Binder M, Groenewald JZ, Summerell BA, Carnegie AJ, Burgess TI, Crous PW (2014) Introducing the Consolidated Species Concept to resolve species in the Teratosphaeriaceae. Persoonia 33:1–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabbow E, Horneck G, Rettberg P, Schott J-U, Panitz C, L’Afflitto A, von Heise-Rotenburg R, Willnecker R, Baglioni P, Hatton J, Dettmann J, Demets R, Reitz G (2009) EXPOSE, an astrobiological exposure facility on the International Space Station—from proposal to flight. Origin Life Evol B 39:581–598

    Article  Google Scholar 

  • Rabbow E, Rettberg P, Barczyk S, Bohmeier M, Parpart A, Panitz C, Horneck G, von heise-rotenburg R, Hoppenbrouwers T, Willnecker R, Baglioni P, Demets R, Dettmann J, Reitz G (2012) EXPOSE-E: an ESA astrobiology mission 1.5 years in space. Astrobiology 12:374–386

    Article  PubMed  Google Scholar 

  • Ruibal C (2004) Isolation and characterization of melanized, slow-growing fungi from semiarid rock surfaces of central Spain and Mallorca. PhD Dissertation, Universidad Autónoma de Madrid

  • Ruibal C, Gonzalo P, Bills GF (2005) Isolation and characterization of melanized fungi from limestone formations in Mallorca. Mycol Prog 4:23–38

    Article  Google Scholar 

  • Ruibal C, Gueidan C, Selbmann L, Gorbushina AA, Crous PW, Groenewald JZ, Muggia L, Grube M, Isola D, Schoch CL, Staley JT, Lutzoni F, de Hoog GS (2009) Phylogeny of rock inhabiting fungi related to Dothideomycetes. Stud Mycol 64:123–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruisi S, Barreca D, Selbmann L, Zucconi L, Onofri S (2007) Fungi in Antarctica. Rev Environ Sci Biotech 6:127–141

    Article  Google Scholar 

  • Scalzi G, Selbmann L, Zucconi L, Rabbow E, Horneck G, Albertano P, Onofri S (2012) LIFE Experiment: Isolation of cryptoendolithic organisms from Antarctic colonized sandstone exposed to space and simulated Mars conditions on the International Space Station. Origin Life Evol B 42:253–262

    Article  Google Scholar 

  • Selbmann L, Onofri S, Fenice M, Federici F, Petruccioli M (2002) Production and structural characterisation of the exopolysaccharide of the Antarctic fungus Phoma herbarum CCFEE 5080. Res Microbiol 153:585–592

    Article  CAS  PubMed  Google Scholar 

  • Selbmann L, de Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic deserts. Stud Mycol 51:1–32

    Google Scholar 

  • Selbmann L, de Hoog GS, Gerrits Van Den Ende AHG, Ruibal C, De Leo F, Zucconi L, Isola D, Ruisi S, Onofri S (2008) Drought meets acid: three new genera in a Dothidealean clade of extremotolerant fungi. Stud Mycol 61:1–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selbmann L, Zucconi L, Ruisi S, Grube M, Cardinale M, Onofri S (2010) Culturable bacteria associated with Antarctic lichens: affiliation and psychrotolerance. Polar Biol 33:71–83

    Article  Google Scholar 

  • Selbmann L, Isola D, Zucconi L, Onofri S (2011) Resistance to UV-B induced DNA damage in extreme-tolerant cryptoendolithic Antarctic fungi: detection by PCR assays. Fungal Biol 115:937–944

    Article  CAS  PubMed  Google Scholar 

  • Selbmann L, Isola D, Fenice F, Zucconi L, Sterflinger K, Onofri S (2012) Potential extinction of Antarctic endemic fungal species as a consequence of Global Warming. Sci Tot Environ 438:127–134

    Article  CAS  Google Scholar 

  • Selbmann L, Egidi E, Isola D, Onofri S, Zucconi Z, de Hoog GS, Chinaglia S, Testa L, Tosi S, Balestrazzi A, Lantieri A, Compagno R, Tigini V, Varese G (2013a) Biodiversity, evolution and adaptation of fungi in extreme environments. Plant Biosyst 147:237–246

    Article  Google Scholar 

  • Selbmann L, Grube M, Onofri S, Isola D, Zucconi Z (2013b) Antarctic epilithic lichens as niches for black meristematic fungi. Biology 2:784–797. doi:10.3390/biology2020784

    Article  PubMed  PubMed Central  Google Scholar 

  • Selbmann L, Isola D, Egidi E, Zucconi L, Gueidan C, de Hoog GS, Onofri S (2014a) Mountain tips as reservoirs for new rock-fungal entities: Saxomyces gen. nov. and four new species from the Alps. Fungal Divers 65:167–182

    Article  Google Scholar 

  • Selbmann L, de Hoog GS, Zucconi L, Isola D, Onofri S (2014b) Black Yeasts From Cold Habitats. In: Buzzini P, Margesin R (eds) Yeasts From Cold Habitats. Springer-Verlag, Berlin, pp 173–189

    Google Scholar 

  • Sert HB, Sümbül H, Sterflinger K (2007a) Microcolonial fungi from antique marbles in Perge/Side/Termessos (Antalya/Turkey). A Van Leeuw 91:217–227

    Article  CAS  Google Scholar 

  • Sert HB, Sümbül H, Sterflinger K (2007b) Sarcinomyces sideticae, a new black yeast from historical marble monuments in Side (Antalya, Turkey). Bot J Linn Soc 154:373–380

    Article  Google Scholar 

  • Sert HB, Sümbül H, Sterflinger K (2007c) A new species of Capnobotryella from monument surfaces. Mycol Res 111:1235–1241

    Article  CAS  PubMed  Google Scholar 

  • Sterflinger K (1998) Temperature and NaCl-tolerance of rock inhabiting meristematic fungi. A van Leeuwenhoek 74:271–281

    Article  CAS  Google Scholar 

  • Sterflinger K (2006) Black yeasts and meristematic fungi: ecology, diversity and identification. In: Rosa C, Gabor P (eds) Yeast handbook: biodiversity and ecophysiology of yeasts. Springer, New York, pp 505–518

    Google Scholar 

  • Sterflinger K, De Hoog GS, Haase G (1999) Phylogeny and ecology of meristematic ascomycetes. Stud Mycol 43:5–22

    Google Scholar 

  • Sterflinger K, Tesei D, Zakharova K (2012) Fungi in hot and cold deserts with particular reference to micro- colonial fungi. Fungal Ecol 5:453–462. doi:10.1016/j.funeco.2011.12.007

    Article  Google Scholar 

  • Tesei D, Marzban G, Zakharova K, Isola D, Selbmann L, Sterflinger K (2012) Alteration of Protein Patterns in Black Rock Inhabiting Fungi as a Response to Different Temperatures. Fungal Biol 116:932–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Uden N (1984) Temperature profiles of yeasts. Adv Microbiol Physiol 25:195–251

    Article  Google Scholar 

  • Weinstein RN, Montiel PO, Johnstone K (2000) Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic. Mycologia 92:222–229

    Article  CAS  Google Scholar 

  • Wollenzien U, de Hoog GS, Krumbein WE, Urzì C (1995) On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks. Sci Tot Environ 167:287–294

    Article  CAS  Google Scholar 

  • Zakharova K, Tesei D, Marzban G, Dijksterhuis J, Wyatt T, Sterflinger K (2013) Microcolonial fungi on rocks: a life in constant drought? Mycopathologia 175:537–547

    Article  PubMed  PubMed Central  Google Scholar 

  • Zakharova K, Sterflinger K, Razzazi-Fazeli E, Noebauer K, Marzban G (2014a) Global proteomics of the extremophile black fungus Cryomyces antarcticus using 2D-Electrophoresis. Nat Sci 6:978–995

    CAS  Google Scholar 

  • Zakharova K, Marzban G, de Vera JP, Lorek A, Sterflinger K (2014b) Protein patterns of black fungi under simulated Mars-like conditions. Sci Rep 4:5114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhdanova NN, Zakharchenko VA, Vember VV, Nakonechnaya LT (2000) Fungi from Chernobyl: mycobiota of the inner regions of the containment structures of the damaged nuclear reactor. Mycol Res 104:1421–1426

    Article  Google Scholar 

  • Zucconi L, Onofri S, Cecchini C, Isola D, Ripa C, Fenice M, Madonna S, Reboleiro-Rivas, Selbmann L (2014) Mapping the lithic colonization at the boundaries of life in Northern Victoria Land, Antarctica. Polar Biol (In Press)

Download references

Acknowledgments

The authors are grateful to Dr. Steven Emslie (University of North Carolina Wilmington) for accurate English revision of the text. This work is in the framework of the Italian National Program for Antarctic Researches (PNRA), at present funded by two projects (PROP09_68 and 2013/AZ1.17). The Italian National Antarctic Museum “Felice Ippolito” is kindly acknowledged for funding CCFEE (Culture Collection of Fungi From Extreme Environments). The ESA projects LIFE and BIOMEX and the ASI projects DC-MIC-2011-036 and DC-MIC-2011-036 are also acknowledged for supporting research in astrobiology. This review was supported by a grant from the São Paulo Research Foundation (FAPESP) of Brazil # 2014/01229-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Selbmann.

Additional information

Communicated by D. E. N. Rangel.

This article is part of the Special Issue “Fungal Stress Responses”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selbmann, L., Zucconi, L., Isola, D. et al. Rock black fungi: excellence in the extremes, from the Antarctic to space. Curr Genet 61, 335–345 (2015). https://doi.org/10.1007/s00294-014-0457-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-014-0457-7

Keywords

Navigation