Skip to main content
Log in

Fungal photobiology: visible light as a signal for stress, space and time

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Visible light is an important source of energy and information for much of life on this planet. Though fungi are neither photosynthetic nor capable of observing adjacent objects, it is estimated that the majority of fungal species display some form of light response, ranging from developmental decision-making to metabolic reprogramming to pathogenesis. As such, advances in our understanding of fungal photobiology will likely reach the broad fields impacted by these organisms, including agriculture, industry and medicine. In this review, we will first describe the mechanisms by which fungi sense light and then discuss the selective advantages likely imparted by their ability to do so.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Avalos J, Estrada AF (2010) Regulation by light in Fusarium. Fungal Genet Biol 47:930–938

    CAS  PubMed  Google Scholar 

  • Avelar GM, Schumacher RI, Zaina PA, Leonard G, Richards TA, Gomes SL (2014) A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus. Curr Biol 24:1234–1240

  • Baker C, Loros J, Dunlap J (2012) The circadian clock of Neurospora crassa. FEMS Microbiol Rev 36:95–110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ballario P, Vittorioso P, Magrelli A, Talora C, Cabibbo A, Macino G (1996) White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J 15:1650–1657

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bayram Ö, Biesemann C, Krappmann S, Galland P, Braus GH (2008a) More than a repair enzyme: Aspergillus nidulans photolyase-like CryA Is a regulator of sexual development. Mol Biol Cell 19:3254–3262

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bayram Ö, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon N, Keller NP, Yu J, Braus GH (2008b) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:1504–1506

    CAS  PubMed  Google Scholar 

  • Bayram Ö, Braus GH, Fischer R, Rodriguez-Romero J (2010) Spotlight on Aspergillus nidulans photosensory systems. Fungal Genet Biol 47:900–908

    CAS  PubMed  Google Scholar 

  • Belden WJ, Larrondo LF, Froehlich AC, Shi M, Chen C, Loros JJ, Dunlap JC (2007) The band mutation in Neurospora crassa is a dominant allele of ras-1 implicating RAS signaling in circadian output. Genes Dev 21:1494–1505

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bell-Pedersen D, Cassone V, Earnest D, Golden S, Hardin P, Thomas T, Zoran M (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6:544–556

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berrocal-Tito GM, Esquivel-Naranjo EU, Horwitz BA, Herrera-Estrella A (2007) Trichoderma atroviride PHR1, a fungal photolyase responsible for DNA repair, autoregulates its own photoinduction. Eukaryot Cell 6:1682–1692

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bieszke JA, Braun EL, Bean LE, Kang S, Natvig DO, Borkovich KA (1999) The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. Proc Natl Acad Sci USA 96:8034–8039

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bluhm BH, Dunkle LD (2008) PHL1 of Cercospora zeae-maydis encodes a member of the photolyase/cryptochrome family involved in UV protection and fungal development. Fungal Genet Biol 45:1364–1372

    CAS  PubMed  Google Scholar 

  • Bluhm BH, Burnham AM, Dunkle LD (2010) A circadian rhythm regulating hyphal melanization in Cercospora kikuchii. Mycologia 102:1221–1228

    PubMed  Google Scholar 

  • Blumenstein A, Vienken K, Tasler R, Purschwitz J, Veith D, Frankenberg-Dinkel N, Fischer R (2005) The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr Biol 15:1833–1838

    CAS  PubMed  Google Scholar 

  • Brandt S, von Stetten D, Günther M, Hildebrandt P, Frankenberg-Dinkel N (2008) The fungal phytochrome FphA from Aspergillus nidulans. J Biol Chem 283:34605–34614

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brenna A, Grimaldi B, Filetici P, Ballario P (2012) Physical association of the WC-1 photoreceptor and the histone acetyltransferase NGF-1 is required for blue light signal transduction in Neurospora crassa. Mol Biol Cell 23:3863–3872

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown L (2004) Fungal rhodopsins and opsin-related proteins: eukaryotic homologues of bacteriorhodopsin with unknown functions. Photochem Photobiol Sci 3:555–565

    CAS  PubMed  Google Scholar 

  • Bruce V, Weight F, Pittendrigh C (1960) Resetting the sporulation rhythm in Pilobolus with short light flashes of high intensity. Science 131:728–730

    CAS  PubMed  Google Scholar 

  • Canessa P, Schumacher J, Hevia M, Tudzynski P, Larrondo L (2013) Assessing the effects of light on differentiation and virulence of the plant pathogen Botrytis cinerea: characterization of the white collar complex. PLoS One 8:e84223

    PubMed Central  PubMed  Google Scholar 

  • Casas-Flores S, Rios-Momberg M, Bibbins M, Ponce-Noyola P, Herrera-Estrella A (2004) BLR-1 and BLR-2, key regulatory elements of photoconidiation and mycelial growth in Trichoderma atroviride. Microbiology 150:3561–3569

    CAS  PubMed  Google Scholar 

  • Castrillo M, García-Martínez J, Avalos J (2013) Light-dependent functions of the Fusarium fujikuroi CryD DASH cryptochrome in development and secondary metabolism. Appl Environ Microbiol 79:2777–2788

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen CH, Ringelberg CS, Gross RH, Dunlap JC, Loros JJ (2009) Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora. EMBO J 28:1029–1042

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen CH, DeMay BS, Gladfelter AS, Dunlap JC, Loros JJ (2010a) Physical interaction between VIVID and white collar complex regulates photoadaptation in Neurospora. Proc Natl Acad Sci USA 107:16715–16720

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen CH, Dunlap JC, Loros JJ (2010b) Neurospora illuminates fungal photoreception. Fungal Genet Biol 47:922–929

    PubMed Central  PubMed  Google Scholar 

  • Collett MA, Garceau N, Dunlap JC, Loros JJ (2002) Light and clock expression of the Neurospora clock gene frequency Is differentially driven by but dependent on WHITE COLLAR-2. Genetics 160:149–158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Collopy P, Colot H, Park G, Ringelberg C, Crew C, Borkovich K, Dunlap J (2010) High-throughput construction of gene deletion cassettes for generation of Neurospora crassa knockout strains. Methods Mol Biol 638:33–40

    CAS  PubMed Central  PubMed  Google Scholar 

  • Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL, Borkovich KA, Dunlap JC (2006) A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci USA 103:10352–10357

    CAS  PubMed Central  PubMed  Google Scholar 

  • Corrochano LM, Cerdá-Olmedo E (1992) Sex, light and carotenes: the development of Phycomyces. Trends Genet 8:268–274

    CAS  PubMed  Google Scholar 

  • Corrochano LM, Garre V (2010) Photobiology in the Zygomycota: Multiple photoreceptor genes for complex responses to light. Fungal Genet Biol 47:893–899

    CAS  PubMed  Google Scholar 

  • Dong W, Tang X, Yu Y, Nilsen R, Kim R, Griffith J, Arnold J, Schuttler H (2008) Systems biology of the clock in Neurospora crassa. PLoS One 3:e3105

    PubMed Central  PubMed  Google Scholar 

  • Dunlap J, Loros J (2004) The Neurospora circadian system. J Biol Rhythms 19:414–424

    CAS  PubMed  Google Scholar 

  • Dunlap JC, Loros JJ (2006) How fungi keep time: circadian system in Neurospora and other fungi. Curr Opin Microbiol 9:579–587

    CAS  PubMed  Google Scholar 

  • El-Jack M, Mackenzie M, Bramley P (1988) The photoregulation of carotenoid biosynthesis in Aspergillus giganteus mut. alba. Planta 174:59–66

    CAS  PubMed  Google Scholar 

  • Estrada AF, Avalos J (2008) The white collar protein WcoA of Fusarium fujikuroi is not essential for photocarotenogenesis, but is involved in the regulation of secondary metabolism and conidiation. Fungal Genet Biol 45:705–718

    CAS  PubMed  Google Scholar 

  • Estrada AF, Avalos J (2009) Regulation and targeted mutation of opsA, coding for the NOP-1 opsin orthologue in Fusarium fujikuroi. J Mol Biol 387:59–73

    CAS  PubMed  Google Scholar 

  • Fanelli F, Schmidt-Heydt M, Haidukowski M, Susca A, Geisen R, Logrieco A, Mulè G (2012) Influence of light on growth, conidiation and fumonisin production by Fusarium verticillioides. Fungal Biol 116:241–248

    CAS  PubMed  Google Scholar 

  • Froehlich AC, Liu Y, Loros JJ, Dunlap JC (2002) White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 297:815–819

    CAS  PubMed  Google Scholar 

  • Froehlich AC, Noh B, Vierstra RD, Loros J, Dunlap JC (2005) Genetic and molecular analysis of phytochromes from the filamentous fungus Neurospora crassa. Eukaryot Cell 4:2140–2152

    CAS  PubMed Central  PubMed  Google Scholar 

  • Froehlich AC, Chen C, Belden WJ, Madeti C, Roenneberg T, Merrow M, Loros JJ, Dunlap JC (2010) Genetic and molecular characterization of a cryptochrome from the filamentous fungus Neurospora crassa. Eukaryot Cell 9:738–750

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fuller KK, Ringelberg CS, Loros JJ, Dunlap JC (2013) The fungal pathogen Aspergillus fumigatus regulates growth, metabolism, and stress resistance in response to light. MBio 4:pii.e00142–13

    PubMed Central  PubMed  Google Scholar 

  • Gin E, Diernfellner A, Brunner M, Höfer T (2013) The Neurospora photoreceptor VIVID exerts negative and positive control on light sensing to achieve adaptation. Mol Syst Biol 9:667

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gooch VD, Mehra A, Larrondo LF, Fox J, Touroutoutoudis M, Loros JJ, Dunlap JC (2008) Fully codon-optimized luciferase uncovers novel temperature characteristics of the Neurospora clock. Eukaryot Cell 7:28–37

    CAS  PubMed Central  PubMed  Google Scholar 

  • Greene AV, Keller N, Haas H, Bell-Pedersen D (2003) A circadian oscillator in Aspergillus spp. regulates daily development and gene expression. Eukaryot Cell 2:231–237

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guzmán-Moreno J, Flores-Martínez A, Brieba LG, Herrera-Estrella A (2014) The Trichoderma reesei Cry1 protein is a member of the cryptochrome/photolyase family with 6-4 photoproduct repair activity. PLoS One 9:e100625

    PubMed Central  PubMed  Google Scholar 

  • Hatakeyama R, Nakahama T, Higuchi Y, Kitamoto K (2007) Light represses conidiation in koji mold Aspergillus oryzae. Biosci Biotechnol Biochem 71:1844–1849

    CAS  PubMed  Google Scholar 

  • He Q, Cheng P, Yang Y, Wang L, Gardner KH, Liu Y (2002) White collar-1, a DNA binding transcription factor and a light sensor. Science 297:840–843

    CAS  PubMed  Google Scholar 

  • Heintzen C, Loros JJ, Dunlap JC (2001) The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting. Cell 104:453–464

    CAS  PubMed  Google Scholar 

  • Hitomi K, Okamoto K, Daiyasu H, Miyashita H, Iwai S, Toh H, Ishiura M, Todo T (2000) Bacterial cryptochrome and photolyase: characterization of two photolyase-like genes of Synechocystis sp. PCC6803. Nucleic Acids Res 28:2353–2362

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hunt SM, Thompson S, Elvin M, Heintzen C (2010) VIVID interacts with the WHITE COLLAR complex and FREQUENCY-interacting RNA helicase to alter light and clock responses in Neurospora. Proc Natl Acad Sci USA 107:16709–16714

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hurley JM, Larrondo LF, Loros JJ, Dunlap JC (2013) Conserved RNA helicase FRH acts nonenzymatically to support the intrinsically disordered Neurospora clock protein FRQ. Mol Cell 52:832–843

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hurley H, Dasgupta A, Emerson J, Zhou X, Ringelberg C, Knabe N, Lipzen A, Lindquist E, Daum C, Barry K, Grigoriev I, Smith K, Galagan J, Bell-Pedersen D, Freitag M, Cheng C, Loros J, Dunlap J (2014) Analysis of clock-regulated genes in Neurospora reveals widespread post-transcriptional control of metabolic potential. Proc Natl Acad Sci USA (in Press)

  • Idnurm A, Heitman J (2005a) Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol 3:e95

    PubMed Central  PubMed  Google Scholar 

  • Idnurm A, Heitman J (2005b) Photosensing fungi: phytochrome in the spotlight. Curr Biol 15:R829–R832

    CAS  PubMed  Google Scholar 

  • Idnurm A, Heitman J (2010) Ferrochelatase is a conserved downstream target of the blue light-sensing white collar complex in fungi. Microbiology 156:2393–2407

    CAS  PubMed Central  PubMed  Google Scholar 

  • Idnurm A, Verma S, Corrochano LM (2010) A glimpse into the basis of vision in the kingdom Mycota. Fungal Genet Biol 47:881–892

    PubMed Central  PubMed  Google Scholar 

  • Kamada T, Sano H, Nakazawa T, Nakahori K (2010) Regulation of fruiting body photomorphogenesis in Coprinopsis cinerea. Fungal Genet Biol 47:917–921

    PubMed  Google Scholar 

  • Kim H, Ridenour J, Dunkle L, Bluhm B (2011a) Regulation of stomatal tropism and infection by light in Cercospora zeae-maydis: evidence for coordinated host/pathogen responses to photoperiod? PLoS Pathog 7:e1002113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim S, Singh P, Park J, Park S, Friedman A, Zheng T, Lee Y, Lee K (2011b) Genetic and molecular characterization of a blue light photoreptor MGWC-1 in Magnaporthe oryzae. Fungal Genet Biol 48:400–407

    CAS  PubMed  Google Scholar 

  • Kim H, Son H, Lee Y- (2014a) Effects of light on secondary metabolism and fungal development of Fusarium graminearum. J Appl Microbiol 116:380–389

    CAS  PubMed  Google Scholar 

  • Kim Y, Choi J, Lee H, Lee G, Lee Y, Choi D (2014b) dbCRY: a Web-based comparative and evolutionary genomics platform for blue-light receptors. Database (Oxford) 2014:bau037

    Google Scholar 

  • Kitamoto A, Suzuki S, Furukawa S (1972) An action spectrum for light-induced primordium formation in a basidiomycete, Favolus arcularius (FR) Ames. Plant Physiol 49:338–340

    CAS  PubMed Central  PubMed  Google Scholar 

  • Larrondo L, Loros J, Dunlap J (2012) High resolution spatiotemporal analysis of gene expression in real time: in vivo analysis of circadian rhythms in Neurospora crassa using a FREQUENCY-luciferase translational reporter. Fungal Genet Biol 49:681–683

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee K, Singh P, Chung W, Ash J, Kim TS, Hang L, Park S (2006) Light regulation of asexual development in the rice blast fungus, Magnaporthe oryzae. Fungal Genet Biol 43:694–706

    CAS  PubMed  Google Scholar 

  • Libkind D, Pérez P, Sommaruga R, Diéguez delC M, Brizzio S, Zagarese H, van Broock MF (2004) Constitutive and UV-inducible synthesis of photoprotective compounds (carotenoids and mycosporines) by freshwater yeasts. Photochem Photobiol Sci 3:281–286

    CAS  PubMed  Google Scholar 

  • Linden H, Macino G (1997) White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. EMBO J 16:98–109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Linden H, Ballario P, Macino G (1997) Blue light regulation in Neurospora crassa. Fungal Genet Biol 22:141–150

    CAS  PubMed  Google Scholar 

  • Liu Y, Cheng P (2003) Photoreception in Neurospora: a tale of two white collar proteins. Cell Mol Life Sci 60:2131–2138

    CAS  PubMed  Google Scholar 

  • Lombardi LM, Brody S (2005) Circadian rhythms in Neurospora crassa: clock gene homologues in fungi. Fungal Genet Biol 42:887–892

    CAS  PubMed  Google Scholar 

  • Losi A (2007) Flavin-based blue-light photosensors: a photobiophysics update. Photochem Photobiol 83:1283–1300

    CAS  PubMed  Google Scholar 

  • Lucas J, Kendrick R, Givan C (1975) Photocontrol of fungal spore germination. Plant Physiol 56:847–849

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lukens RJ (1965) Reversal by red light of blue light inhibition of sporulation in Alternaria solani. Phytopathology 55:1032

    Google Scholar 

  • Malzahn E, Ciprianidis S, Kaldi K, Schafmeier T, Brunner M (2010) Photoadaptation in Neurospora by competitive interaction of activating and inhibitory LOV domains. Cell 142:762–772

    CAS  PubMed  Google Scholar 

  • McClung CR, Gutiérrez RA (2010) Network news: prime time for systems biology of the plant circadian clock. Curr Opin Genet Dev 20:588–598

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mooney JL, Yager LN (1990) Light is required for conidiation in Aspergillus nidulans. Genes Dev 4:1473–1482

    CAS  PubMed  Google Scholar 

  • Okamoto S, Furuya K, Nozaki S, Aoki K, Niki H (2013) Synchronous activation of cell division by light or temperature stimuli in the dimorphic yeast Schizosaccharomyces japonicus. Eukaryot Cell 12:1235–1243

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olmedo M, Ruger-Herreros C, Luque EM, Corrochano LM (2010) A complex photoreceptor system mediates the regulation by light of the conidiation genes con-10 and con-6 in Neurospora crassa. Fungal Genet Biol 47:352–363

    CAS  PubMed  Google Scholar 

  • Page R (1962) Light and the asexual reproduction of Pilobolus. Science 138:1238–1245

    CAS  PubMed  Google Scholar 

  • Perkins J, Gordon S (1969) Morphogenesis in Schizophyllum commune II. Effects of monochromatic light. Plant Physiol 44:1712–1716

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pittendrigh C, Bruce V, Rosensweig N, Rubin M (1959) Growth patterns in Neurospora: a biological clock in Neurospora. Nature 184:169–170

    Google Scholar 

  • Pruß S, Fetzner R, Seither K, Herr A, Pfeiffer E, Metzler M, Lawrence CB, Fischer R (2014) Role of the Alternaria alternata blue-light receptor LreA (white-collar 1) in spore formation and secondary metabolism. Appl Environ Microbiol 80:2582–2591

    PubMed Central  PubMed  Google Scholar 

  • Purschwitz J, Müller S, Kastner C, Schöser M, Haas H, Espeso EA, Atoui A, Calvo AM, Fischer R (2008) Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. Curr Biol 18:255–259

    CAS  PubMed  Google Scholar 

  • Purschwitz J, Müller S, Fischer R (2009) Mapping the interaction sites of Aspergillus nidulans phytochrome FphA with the global regulator VeA and the white collar protein LreB. Mol Genet Genomics 281:35–42

    CAS  PubMed  Google Scholar 

  • Quiles-Rosillo M, Ruiz-Vázquez R, Torres-Martínez S, Garre V (2005) Light induction of the carotenoid biosynthesis pathway in Blakeslea trispora. Fungal Genet Biol 42:141–153

    CAS  PubMed  Google Scholar 

  • Rangel DEN, Fernandes EKK, Bragu GUL, Roberts DW (2011) Visible light during mycelial growth and conidiation of Metarhizum robertsii produces conidia with increased stress tolerance. FEMS Microbiol Lett 315:81–86

    CAS  PubMed  Google Scholar 

  • Richartz G, MacLellan A (1987) Action spectra for hyphal aggregation, the first stage of fruiting, in the basidiomycete Pleurotus ostreatus. Photochem Photobiol 45:815–820

    Google Scholar 

  • Rodriguez-Romero J, Corrochano L (2004) The gene for the heat-shock protein HSP100 is induced by blue light and heat-shock in the fungus Phycomyces blakesleeanus. Curr Genet 46:295–303

    CAS  PubMed  Google Scholar 

  • Rodriguez-Romero J, Corrochano L (2006) Regulation by blue light and heat shock of gene transcription in the fungus Phycomyces: proteins required for photoinduction and mechanism for adaptation to light. Mol Microbiol 61:1049–1059

    CAS  PubMed  Google Scholar 

  • Rodriguez-Romero J, Hedtke M, Kastner C, Müller S, Fischer R (2010) Fungi, hidden in soil or up in the air: light makes a difference. Annu Rev Microbiol 64:585–610

    CAS  PubMed  Google Scholar 

  • Röhrig J, Kastner C, Fischer R (2013) Light inhibits spore germination through phytochrome in Aspergillus nidulans. Curr Genet 59:55–62

    PubMed  Google Scholar 

  • Ruger-Herreros C, Rodríguez-Romero J, Fernández-Barranco R, Olmedo M, Fischer R, Corrochano LM, Canovas D (2011) Regulation of conidiation by light in Aspergillus nidulans. Genetics 188:809–822

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruiz-Roldan MC, Garre V, Guarro J, Marine M, Roncero MI (2008) Role of the White Collar 1 photoreceptor in carotenogenesis, UV resistance, hydrophobicity, and virulence of Fusarium oxysporum. Eukaryot Cell 7:1227–1230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salichos L, Rokas A (2010) The diversity and evolution of circadian clock proteins in fungi. Mycologia 102:269–278

    CAS  PubMed  Google Scholar 

  • Sanchez-Arreguin A, Perez-Martinez A, Herrera-Estrella A (2012) Proteomic analysis of Trichoderma atroviride reveals independent roles for transcription factors BLR-1 and BLR-2 in light and darkness. Eukaryot Cell 11:30–41

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sano H, Kaneko S, Sakamoto Y, Sato T, Shishido K (2009) The basidiomycetous mushroom Lentinula edodes white collar-2 homolog PHRB, a partner of putative blue-light photoreceptor PHRA, binds to a specific site in the promoter region of the L. edodes tyrosinase gene. Fungal Genet Biol 46:333–341

    CAS  PubMed  Google Scholar 

  • Saranak J, Foster KW (1997) Rhodopsin guides fungal phototaxis. Nature 387:465–466

    CAS  PubMed  Google Scholar 

  • Sargent M, Briggs W, Woodward D (1966) Circadian nature of a rhythm expressed by an invertaseless strain of Neurospora crassa. Plant Physiol 41:1343–1349

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schaller GE, Shiu SH, Armitage JP (2011) Two-component systems and their co-option for eukaryotic signal transduction. Curr Biol 21:R320–R330

    CAS  PubMed  Google Scholar 

  • Schmoll M, Franchi L, Kubicek CP (2005) Envoy, a PAS/LOV Domain Protein of Hypocrea jecorina (anamorph Trichoderma reesei), modulates cellulase gene transcription in response to light. Eukaryot Cell 4:1998–2007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmoll M, Schuster A, Silva Rdo N, Kubicek CP (2009) The G-alpha protein GNA3 of Hypocrea jecorina (anamorph Trichoderma reesei) regulates cellulase gene expression in the presence of light. Eukaryot Cell 8:410–420

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schneider MJ, Murray BJ (1979) Phytochrome mediation of uredospore germination in the fungus Puccinia graminis. Photochem Photobiol 29:1051–1052

    CAS  Google Scholar 

  • Schuch AP, Garcia CC, Makita K, Menck CF (2013) DNA damage as a biological sensor for environmental sunlight. Photochem Photobiol Sci 12:1259–1272

    CAS  PubMed  Google Scholar 

  • Schumacher J, Simon A, Cohrs K, Viaud M, Tudzynski P (2014) The transcription factor BcLTF1 regulates virulence and light responses in the nectrotrophic plant pathogen Botrytis cinerea. PLoS Genet 10:e1004040

    PubMed Central  PubMed  Google Scholar 

  • Schuster A, Kubicek CP, Friedl MA, Druzhinina IS, Schmoll M (2007) Impact of light on Hypocrea jecorina and the multiple cellular roles of ENVOY in this process. BMC Genom 8:449

    Google Scholar 

  • Schwerdtfeger C, Linden H (2003) VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J 22:4846–4855

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seibel C, Tisch D, Kubicek CP, Schmoll M (2012) ENVOY Is a major determinant in regulation of sexual development in Hypocrea jecorina (Trichoderma reesei). Eukaryot Cell 11:885–895

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shinohara ML, Correa A, Bell-Pedersen D, Dunlap JC, Loros JJ (2002) Neurospora clock-controlled gene 9 (ccg-9) encodes trehalose synthase: circadian regulation of stress responses and development. Eukaryot Cell 1:33–43

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shiu C, Lee T (2005) Ultraviolet-B-induced oxidative stress and responses of the ascorbate–glutathione cycle in a marine macroalga Ulva fasciata. J Exp Bot 56:2851–2865

    CAS  PubMed  Google Scholar 

  • Silva F, Torres-Martínez S, Garre V (2006) Distinct white collar-1 genes control specific light responses in Mucor circinelloides. Mol Microbiol 61:1023–1037

    CAS  PubMed  Google Scholar 

  • Tan KK (1974) Red-far-red reversible photoreaction in the recovery from blue-light inhibition of sporulation in Botrytis cinerea. J Gen Microbiol 8a:201–202

    Google Scholar 

  • Tisch D, Schmoll M (2013) Targets of light signalling in Trichoderma reesei. BMC Genom 14:657

    CAS  Google Scholar 

  • Veluchamy S, Rollins JA (2008) A CRY-DASH-type photolyase/cryptochrome from Sclerotinia sclerotiorum mediates minor UV-A-specific effects on development. Fungal Genet Biol 45:1265–1276

    CAS  PubMed  Google Scholar 

  • Verma S, Idnurm A (2013) The Uve1 endonuclease is regulated by the white collar complex to protect Cryptococcus neoformans from UV damage. PLoS Genet 9:e1003769

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang T, Dong C (2014) Photo morphogenesis and photo response of the blue-light receptor gene Cmwc-1 in different strains of Cordyceps militaris. FEMS Microbiol Lett 352:190–197

    CAS  PubMed  Google Scholar 

  • Yu S-, Ramkumar G, Lee YH (2013) Light quality influences the virulence and physiological responses of Colletotrichum acutatum causing anthracnose in pepper plants. J Appl Microbiol 115:509–516

    CAS  PubMed  Google Scholar 

  • Zhu P, Zhang C, Xiao H, Wang Y, Toyoda H, Xu L (2013) Exploitable regulatory effects of light on growth and development of Botrytis cinerea. J Plant Path 95:499–507

    Google Scholar 

  • Zoltowski BD, Schwerdtfeger C, Widom J, Loros JJ, Bilwes AM, Dunlap JC, Crane BR (2007) Conformational switching in the fungal light sensor Vivid. Science 316:1054–1057

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to than Jillian Emerson for her contributions to the figure. Our own work was supported by the National Institute of General Medical Sciences of the National Institute of Health to J.J.L (Grant RO1 GM083336) and J.C.D (Grants RO1 GM34985 and PO1 GM68087). This review article is supported, in part, by a grant from the São Paulo Research Foundation (FAPESP) of Brazil #2014/01229-4.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jennifer J. Loros or Jay C. Dunlap.

Additional information

Communicated by D.E.N. Rangel.

This article is part of the Special Issue “Fungal Stress Responses”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuller, K.K., Loros, J.J. & Dunlap, J.C. Fungal photobiology: visible light as a signal for stress, space and time. Curr Genet 61, 275–288 (2015). https://doi.org/10.1007/s00294-014-0451-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-014-0451-0

Keywords

Navigation