Current Genetics

, Volume 59, Issue 4, pp 187–196 | Cite as

Use of atomic force microscopy (AFM) to explore cell wall properties and response to stress in the yeast Saccharomyces cerevisiae

  • Jean Marie Francois
  • Cécile Formosa
  • Marion Schiavone
  • Flavien Pillet
  • Hélène Martin-Yken
  • Etienne Dague
Research Article

Abstract

Over the past 20 years, the yeast cell wall has been thoroughly investigated by genetic and biochemical methods, leading to remarkable advances in the understanding of its biogenesis and molecular architecture as well as to the mechanisms by which this organelle is remodeled in response to environmental stresses. Being a dynamic structure that constitutes the frontier between the cell interior and its immediate surroundings, imaging cell surface, measuring mechanical properties of cell wall or probing cell surface proteins for localization or interaction with external biomolecules are among the most burning questions that biologists wished to address in order to better understand the structure–function relationships of yeast cell wall in adhesion, flocculation, aggregation, biofilm formation, interaction with antifungal drugs or toxins, as well as response to environmental stresses, such as temperature changes, osmotic pressure, shearing stress, etc. The atomic force microscopy (AFM) is nowadays the most qualified and developed technique that offers the possibilities to address these questions since it allows working directly on living cells to explore and manipulate cell surface properties at nanometer resolution and to analyze cell wall proteins at the single molecule level. In this minireview, we will summarize the most recent contributions made by AFM in the analysis of the biomechanical and biochemical properties of the yeast cell wall and illustrate the power of this tool to unravel unexpected effects caused by environmental stresses and antifungal agents on the surface of living yeast cells.

Keywords

Atomic force microscopy (AFM) Saccharomyces cerevisiae Cell surface Cell wall Stress Cellular sensors Antifungal agents 

References

  1. Adya AK, Canetta E, Walker GM (2006) Atomic force microscopic study of the influence of physical stresses on Saccharomyces cerevisiae and Schizosaccharomyces pombe. FEMS Yeast Res 6:120–128PubMedCrossRefGoogle Scholar
  2. Aguilar-Uscanga B, Francois JM (2003) A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Lett Appl Microbiol 37:268–274PubMedCrossRefGoogle Scholar
  3. Alsteens D, Dague E, Rouxhet PG, Baulard AR, Dufrene YF (2007) Direct measurement of hydrophobic forces on cell surfaces using AFM. Langmuir 23:11977–11979PubMedCrossRefGoogle Scholar
  4. Alsteens D, Dupres V, Mc EK, Wildling L, Gruber HJ, Dufrene YF (2008) Structure, cell wall elasticity and polysaccharide properties of living yeast cells, as probed by AFM. Nanotechnology 19:384005PubMedCrossRefGoogle Scholar
  5. Alsteens D, Dupres V, Yunus S, Latge JP, Heinisch JJ, Dufrene YF (2012) High-resolution imaging of chemical and biological sites on living cells using peak force tapping atomic force microscopy. Langmuir 28:16738–16744PubMedCrossRefGoogle Scholar
  6. Backhaus K, Heilmann CJ, Sorgo AG, Purschke G, de Koster CG, Klis FM, Heinisch JJ (2010) A systematic study of the cell wall composition of Kluyveromyces lactis. Yeast 27:647–660PubMedCrossRefGoogle Scholar
  7. Ballou CE (1990) Isolation, characterization, and properties of Saccharomyces cerevisiae mnn mutants with nonconditional protein glycosylation defects. Methods Enzymol 185:440–470PubMedCrossRefGoogle Scholar
  8. Bauer FF, Govender P, Bester MC (2010) Yeast flocculation and its biotechnological relevance. Appl Microbiol Biotechnol 88:31–39PubMedCrossRefGoogle Scholar
  9. Binnig G, Quate CF (1986) Atomic force microscopy. Phys Rev Lett 56:930–933PubMedCrossRefGoogle Scholar
  10. Cabib E, Arroyo J (2013) How carbohydrates sculpt cells: chemical control of morphogenesis in the yeast cell wall. Nat Rev Microbiol 11:648–655PubMedCrossRefGoogle Scholar
  11. Cabib E, Roh DH, Schmidt M, Crotti LB, Varma A (2001) The yeast cell wall and septum as paradigms of cell growth and morphogenesis. J Biol Chem 276:19679–19682PubMedCrossRefGoogle Scholar
  12. Canetta E, Adya AK, Walker GM (2006) Atomic force microscopic study of the effects of ethanol on yeast cell surface morphology. FEMS Microbiol Lett 255:308–315PubMedCrossRefGoogle Scholar
  13. Canetta E, Walker GM, Adya AK (2009) Nanoscopic morphological changes in yeast cell surfaces caused by oxidative stress: an atomic force microscopic study. J Microbiol Biotechnol 19:547–555PubMedGoogle Scholar
  14. Caridi A (2006) Enological functions of parietal yeast mannoproteins. Antonie Van Leeuwenhoek 89:417–422PubMedCrossRefGoogle Scholar
  15. Carrillo-Munoz AJ, Giusiano G, Ezkurra PA, Quindos G (2006) Antifungal agents: mode of action in yeast cells. Rev Esp Quimioter 19:130–139PubMedGoogle Scholar
  16. Casuso I, Rico F, Scheuring S (2011) High-speed atomic force microscopy: structure and dynamics of single proteins. Curr Opin Chem Biol 15:704–709PubMedCrossRefGoogle Scholar
  17. Chopinet L, Formosa C, Rols MP, Duval RE, Dague E (2013) Imaging living cells surface and quantifying its properties at high resolution using AFM in QI mode. Micron 48:26–33PubMedCrossRefGoogle Scholar
  18. Dague E, Alsteens D, Latge JP, Verbelen C, Raze D, Baulard AR, Dufrene YF (2007) Chemical force microscopy of single live cells. Nano Lett 7:3026–3030PubMedCrossRefGoogle Scholar
  19. Dague E, Delcorte A, Latge JP, Dufrene YF (2008) Combined use of atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry for cell surface analysis. Langmuir 24:2955–2959PubMedCrossRefGoogle Scholar
  20. Dague E, Bitar R, Ranchon H, Durand F, Yken HM, Francois JM (2010) An atomic force microscopy analysis of yeast mutants defective in cell wall architecture. Yeast 27:673–684PubMedCrossRefGoogle Scholar
  21. Dague E, Jauvert E, Laplatine L, Viallet B, Thibault C, Ressier L (2011) Assembly of live micro-organisms on microstructured PDMS stamps by convective/capillary deposition for AFM bio-experiments. Nanotechnology 22:395102PubMedCrossRefGoogle Scholar
  22. de Groot PW, Ram AF, Klis FM (2005) Features and functions of covalently linked proteins in fungal cell walls. Fungal Genet Biol 42:657–675PubMedCrossRefGoogle Scholar
  23. de Groot PW, Kraneveld EA, Yin QY, Dekker HL, Gross U, Crielaard W, de Koster CG, Bader O, Klis FM, Weig M (2008) The cell wall of the human pathogen Candida glabrata: differential incorporation of novel adhesin-like wall proteins. Eukaryot Cell 7:1951–1964PubMedCrossRefGoogle Scholar
  24. Deresinski SC, Stevens DA (2003) Caspofungin. Clin Infect Dis 36:1445–1457PubMedCrossRefGoogle Scholar
  25. Dufrene YF (2010) Atomic force microscopy of fungal cell walls: an update. Yeast 27:465–471PubMedCrossRefGoogle Scholar
  26. Dunn B, Sherlock G (2008) Reconstruction of the genome origins and evolution of the hybrid lager yeast Saccharomyces pastorianus. Genome Res 18:1610–1623PubMedCrossRefGoogle Scholar
  27. Dupres V, Alsteens D, Wilk S, Hansen B, Heinisch JJ, Dufrene YF (2009) The yeast Wsc1 cell surface sensor behaves like a nanospring in vivo. Nat Chem Biol 5:857–862PubMedCrossRefGoogle Scholar
  28. Dupres V, Dufrene YF, Heinisch JJ (2010) Measuring cell wall thickness in living yeast cells using single molecular rulers. ACS Nano 4:5498–5504PubMedCrossRefGoogle Scholar
  29. Ebner A, Hinterdorfer P, Gruber HJ (2007) Comparison of different aminofunctionalization strategies for attachment of single antibodies to AFM cantilevers. Ultramicroscopy 107:922–927PubMedCrossRefGoogle Scholar
  30. El Kirat K, Burton I, Dupres V, Dufrene YF (2005) Sample preparation procedures for biological atomic force microscopy. J Microsc 218:199–207PubMedCrossRefGoogle Scholar
  31. Formosa C, Schiavone M, Martin-Yken H, Francois JM, Duval RE, Dague E (2013) Nanoscale effects of Caspofungin against two yeast species; Saccharomyces cerevisiae and Candida albicans. Antimicrob Agents Chemother 57:3498–3506PubMedCrossRefGoogle Scholar
  32. Free SJ (2013) Fungal cell wall organization and biosynthesis. Adv Genet 81:33–82PubMedCrossRefGoogle Scholar
  33. Fuchs BB, Mylonakis E (2009) Our paths might cross: the role of the fungal cell wall integrity pathway in stress response and cross talk with other stress response pathways. Eukaryot Cell 8:1616–1625PubMedCrossRefGoogle Scholar
  34. Gad M, Ikai A (1995) Method for immobilizing microbial cells on gel surface for dynamic AFM studies. Biophys J 69:2226–2233PubMedCrossRefGoogle Scholar
  35. Gad M, Itoh A, Ikai A (1997) Mapping cell wall polysaccharides of living microbial cells using atomic force microscopy. Cell Biol Int 21:697–706PubMedCrossRefGoogle Scholar
  36. Gotzinger M, Weigl B, Peukert W, Sommer K (2007) Effect of roughness on particle adhesion in aqueous solutions: a study of Saccharomyces cerevisiae and a silica particle. Colloids Surf B Biointerfaces 55:44–50PubMedCrossRefGoogle Scholar
  37. Guo S, Shen X, Yan G, Ma D, Bai X, Li S, Jiang Y (2009) A MAP kinase dependent feedback mechanism controls Rho1 GTPase and actin distribution in yeast. PLoS ONE 4:e6089PubMedCrossRefGoogle Scholar
  38. Heinisch JJ (2005) Baker’s yeast as a tool for the development of antifungal kinase inhibitors–targeting protein kinase C and the cell integrity pathway. Biochim Biophys Acta 1754:171–182PubMedCrossRefGoogle Scholar
  39. Heinisch JJ (2008) Baker’s yeast as a tool for the development of antifungal drugs which target cell integrity—an update. Expert Opin Drug Discov 3:931–943PubMedCrossRefGoogle Scholar
  40. Heinisch JJ, Lipke PN, Beaussart A, El Kirat CS, Dupres V, Alsteens D, Dufrene YF (2012) Atomic force microscopy—looking at mechanosensors on the cell surface. J Cell Sci 125:4189–4195PubMedCrossRefGoogle Scholar
  41. Hinterdorfer P, Dufrene YF (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3:347–355PubMedCrossRefGoogle Scholar
  42. Hinterdorfer P, Garcia-Parajo MF, Dufrene YF (2012) Single-molecule imaging of cell surfaces using near-field nanoscopy. Acc Chem Res 45:327–336PubMedCrossRefGoogle Scholar
  43. Jauvert E, Dague E, Severac M, Caminade A, Ressier L, Majoral J, Trevisiol E (2012) Probing sungle molecule interactions by AFM using biofunctionalized dendritips. Sensor Actuators B Chem 168:436–441CrossRefGoogle Scholar
  44. Jendretzki A, Wittland J, Wilk S, Straede A, Heinisch JJ (2011) How do I begin? Sensing extracellular stress to maintain yeast cell wall integrity. Eur J Cell Biol 90:740–744PubMedCrossRefGoogle Scholar
  45. Kim KS, Kim YS, Han I, Kim MH, Jung MH, Park HK (2011) Quantitative and qualitative analyses of the cell death process in Candida albicans treated by antifungal agents. PLoS ONE 6:e28176PubMedCrossRefGoogle Scholar
  46. Kim YS, Kim KS, Han I, Kim MH, Jung MH, Park HK (2012) Quantitative and qualitative analysis of the antifungal activity of allicin alone and in combination with antifungal drugs. PLoS ONE 7:e38242PubMedCrossRefGoogle Scholar
  47. Kirat-Chatel S, Beaussart A, Alsteens D, Jackson DN, Lipke PN, Dufrene YF (2013) Nanoscale analysis of caspofungin-induced cell surface remodelling in Candida albicans. Nanoscale 5:1105–1115PubMedCrossRefGoogle Scholar
  48. Klis FM, Boorsma A, de Groot PW (2006) Cell wall construction in Saccharomyces cerevisiae. Yeast 23:185–202PubMedCrossRefGoogle Scholar
  49. Klis FM, Sosinska GJ, de Groot PW, Brul S (2009) Covalently linked cell wall proteins of Candida albicans and their role in fitness and virulence. FEMS Yeast Res 9:1013–1028PubMedCrossRefGoogle Scholar
  50. Kollar R, Reinhold BB, Petrakova E, Yeh HJ, Ashwell G, Drgonova J, Kapteyn JC, Klis FM, Cabib E (1997) Architecture of the yeast cell wall. Beta(1→6)-glucan interconnects mannoprotein, beta(1→)3-glucan, and chitin. J Biol Chem 272:17762–17775PubMedCrossRefGoogle Scholar
  51. Lesage G, Bussey H (2006) Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:317–343PubMedCrossRefGoogle Scholar
  52. Lesage G, Sdicu AM, Menard P, Shapiro J, Hussein S, Bussey H (2004) Analysis of beta-1,3-glucan assembly in Saccharomyces cerevisiae using a synthetic interaction network and altered sensitivity to caspofungin. Genetics 167:35–49PubMedCrossRefGoogle Scholar
  53. Levin DE (2005) Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69:262–291PubMedCrossRefGoogle Scholar
  54. Levin DE (2011) Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189:1145–1175PubMedCrossRefGoogle Scholar
  55. Lodder AL, Lee TK, Ballester R (1999) Characterization of the wsc1 protein, a putative receptor in the stress response of Saccharomyces cerevisiae. Genetics 152:1487–1499PubMedGoogle Scholar
  56. Lottersberger F, Panza A, Lucchini G, Piatti S, Longhese MP (2006) The Saccharomyces cerevisiae 14-3-3 proteins are required for the G1/S transition, actin cytoskeleton organization and cell wall integrity. Genetics 173:661–675PubMedCrossRefGoogle Scholar
  57. Ma M, Liu ZL (2010) Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 87:829–845PubMedCrossRefGoogle Scholar
  58. Mendez-Vilas A, Diaz J, Donoso MG, Gallardo-Moreno AM, Gonzalez-Martin ML (2006) Ultrastructural and physico-chemical heterogeneities of yeast surfaces revealed by mapping lateral-friction and normal-adhesion forces using an atomic force microscope. Antonie Van Leeuwenhoek 89:495–509PubMedCrossRefGoogle Scholar
  59. Mishra NN, Prasad T, Sharma N, Payasi A, Prasad R, Gupta DK, Singh R (2007) Pathogenicity and drug resistance in Candida albicans and other yeast species. A review. Acta Microbiol Immunol Hung 54:201–235PubMedCrossRefGoogle Scholar
  60. Moseley JB, Goode BL (2006) The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol Mol Biol Rev 70:605–645PubMedCrossRefGoogle Scholar
  61. Muller DJ, Dufrene YF (2011) Atomic force microscopy: a nanoscopic window on the cell surface. Trends Cell Biol 21:461–469PubMedCrossRefGoogle Scholar
  62. Orlean P (2012) Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 192:775–818PubMedCrossRefGoogle Scholar
  63. Pelling AE, Sehati S, Gralla EB, Valentine JS, Gimzewski JK (2004) Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae. Science 305:1147–1150PubMedCrossRefGoogle Scholar
  64. Reinoso-Martin C, Schuller C, Schuetzer-Muehlbauer M, Kuchler K (2003) The yeast protein kinase C cell integrity pathway mediates tolerance to the antifungal drug caspofungin through activation of Slt2p mitogen-activated protein kinase signaling. Eukaryot Cell 2:1200–1210PubMedCrossRefGoogle Scholar
  65. Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943PubMedCrossRefGoogle Scholar
  66. Schatzmayr G, Zehner F, Taubel M, Schatzmayr D, Klimitsch A, Loibner AP, Binder EM (2006) Microbiologicals for deactivating mycotoxins. Mol Nutr Food Res 50:543–551PubMedCrossRefGoogle Scholar
  67. Serrano R, Martin H, Casamayor A, Arino J (2006) Signaling alkaline pH stress in the yeast Saccharomyces cerevisiae through the Wsc1 cell surface sensor and the Slt2 MAPK pathway. J Biol Chem 281:39785–39795PubMedCrossRefGoogle Scholar
  68. Smits GJ, Kapteyn JC, van den Ende H, Klis FM (1999) Cell wall dynamics in yeast. Curr Opin Microbiol 2:348–352PubMedCrossRefGoogle Scholar
  69. Stanley D, Bandara A, Fraser S, Chambers PJ, Stanley GA (2010) The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J Appl Microbiol 109:13–24PubMedGoogle Scholar
  70. Touhami A, Nysten B, Dufrêne YF (2003) Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy. Langmuir 19:4546Google Scholar
  71. van Zyl WH, Lynd LR, den Haan R, McBride JE (2007) Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:205–235PubMedGoogle Scholar
  72. Verstrepen KJ, Klis FM (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60:5–15PubMedCrossRefGoogle Scholar
  73. Walker MA (1998) Yeast physiology and Biotechnology. Wiley, West SussexGoogle Scholar
  74. Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373PubMedCrossRefGoogle Scholar
  75. Wilk S, Wittland J, Thywissen A, Schmitz HP, Heinisch JJ (2010) A block of endocytosis of the yeast cell wall integrity sensors Wsc1 and Wsc2 results in reduced fitness in vivo. Mol Genet Genomics 284:217–229PubMedCrossRefGoogle Scholar
  76. Yiannikouris A, Andre G, Poughon L, Francois J, Dussap CG, Jeminet G, Bertin G, Jouany JP (2006) Chemical and conformational study of the interactions involved in mycotoxin complexation with beta-d-Glucans. Biomacromolecules 7:1147–1155PubMedCrossRefGoogle Scholar
  77. Zaman S, Lippman SI, Zhao X, Broach JR (2008) How Saccharomyces responds to nutrients. Annu Rev Genet 42:27–81PubMedCrossRefGoogle Scholar
  78. Zhao L, Schaefer D, Xu H, Modi SJ, LaCourse WR, Marten MR (2005) Elastic properties of the cell wall of Aspergillus nidulans studied with atomic force microscopy. Biotechnol Prog 21:292–299PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jean Marie Francois
    • 1
    • 2
    • 3
  • Cécile Formosa
    • 4
    • 5
  • Marion Schiavone
    • 1
    • 2
    • 3
  • Flavien Pillet
    • 4
    • 5
    • 6
  • Hélène Martin-Yken
    • 1
    • 2
    • 3
  • Etienne Dague
    • 4
    • 5
  1. 1.Université de Toulouse, INSA, UPS, INPToulouseFrance
  2. 2.INRA, UMR792 Ingénierie des Systèmes Biologiques et des ProcédésToulouseFrance
  3. 3.CNRS, UMR5504ToulouseFrance
  4. 4.CNRS, LAASToulouseFrance
  5. 5.Université de Toulouse, UPS, INSA, INP, ISAE, LAASToulouseFrance
  6. 6.Institut de Pharmacologie et de Biologie Structurale, UMR 5089ToulouseFrance

Personalised recommendations