Current Genetics

, Volume 60, Issue 1, pp 49–59 | Cite as

Mitochondrial genome of the basidiomycetous yeast Jaminaea angkorensis

  • Eva Hegedusova
  • Brona Brejova
  • Lubomir Tomaska
  • Matthias Sipiczki
  • Jozef Nosek
Original Article


Jaminaea angkorensis is an anamorphic basidiomycetous yeast species originally isolated from decaying leaves in Cambodia. Taxonomically, J. angkorensis is affiliated with Microstromatales (Exobasidiomycetes, Ustilaginomycotina, Basidiomycota) and represents a basal phylogenetic lineage of this fungal order. To perform a comparative analysis of J. angkorensis with other basidiomycetes, we determined and analyzed its complete mitochondrial DNA sequence. The mitochondrial genome is represented by 29,999 base pairs long, circular DNA containing 32 % guanine and cytosine residues. Its genetic organization is relatively compact and comprises typical genes for 15 conserved proteins involved in oxidative phosphorylation (atp6, 8, and 9; cob; cox1, 2, and 3; and nad1, 2, 3, 4, 4L, 5, and 6) and translation (rps3), two ribosomal RNAs (rnl and rns) and twenty-two transfer RNAs (trnA-Y). Although the gene content is similar to other basidiomycetes, the gene orders in the examined species exhibit only a limited synteny, reflecting their phylogenetic distances and extensive genome rearrangements. In addition, a comparative analysis of basidiomycete mitochondrial genomes indicates that stop-to-tryptophan reassignment of the UGA codon was accompanied by structural alterations of tRNA-Trp(CCA). These results provide an insight into the evolution of the genetic code in fungal mitochondria.


Mitochondrial DNA Codon usage tRNA-Trp Molecular phylogeny Jaminaea angkorensis Basidiomycota 



We wish to thank L. Kovac (Comenius University in Bratislava) for continuous support and members of our laboratories for discussions and/or technical assistance. This work was supported by grants from the Slovak Research and Development Agency (APVV 0123-10 and 0035-11), Slovak Grant Agency (VEGA 1/0405/11 and 1/1085/12), and the Hungarian Scientific Research Fund (K81792).

Ethical standards

The authors declare that the experiments comply with the current laws of the countries, in which they were performed.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

294_2013_410_MOESM1_ESM.pdf (636 kb)
Supplementary material 1 (PDF 636 kb)
294_2013_410_MOESM2_ESM.fasta (9 kb)
Supplementary material 2 (FASTA 8 kb)
294_2013_410_MOESM3_ESM.fasta (7 kb)
Supplementary material 3 (FASTA 6 kb)
294_2013_410_MOESM4_ESM.fasta (2 kb)
Supplementary material 4 (FASTA 1 kb)
294_2013_410_MOESM5_ESM.fasta (2 kb)
Supplementary material 5 (FASTA 2 kb)
294_2013_410_MOESM6_ESM.fasta (10 kb)
Supplementary material 6 (FASTA 10 kb)
294_2013_410_MOESM7_ESM.fasta (14 kb)
Supplementary material 7 (FASTA 13 kb)
294_2013_410_MOESM8_ESM.fasta (7 kb)
Supplementary material 8 (FASTA 6 kb)
294_2013_410_MOESM9_ESM.fasta (8 kb)
Supplementary material 9 (FASTA 7 kb)
294_2013_410_MOESM10_ESM.fasta (10 kb)
Supplementary material 10 (FASTA 9 kb)
294_2013_410_MOESM11_ESM.fasta (18 kb)
Supplementary material 11 (FASTA 18 kb)
294_2013_410_MOESM12_ESM.fasta (14 kb)
Supplementary material 12 (FASTA 13 kb)
294_2013_410_MOESM13_ESM.fasta (5 kb)
Supplementary material 13 (FASTA 5 kb)
294_2013_410_MOESM14_ESM.fasta (16 kb)
Supplementary material 14 (FASTA 16 kb)
294_2013_410_MOESM15_ESM.fasta (18 kb)
Supplementary material 15 (FASTA 18 kb)
294_2013_410_MOESM16_ESM.fasta (11 kb)
Supplementary material 16 (FASTA 11 kb)
294_2013_410_MOESM17_ESM.fasta (6 kb)
Supplementary material 17 (FASTA 6 kb)
294_2013_410_MOESM18_ESM.fasta (1 kb)
Supplementary material 18 (FASTA 1 kb)
294_2013_410_MOESM19_ESM.fasta (2 kb)
Supplementary material 19 (FASTA 1 kb)
294_2013_410_MOESM20_ESM.fasta (9 kb)
Supplementary material 20 (FASTA 9 kb)
294_2013_410_MOESM21_ESM.fasta (12 kb)
Supplementary material 21 (FASTA 12 kb)
294_2013_410_MOESM22_ESM.fasta (5 kb)
Supplementary material 22 (FASTA 5 kb)
294_2013_410_MOESM23_ESM.fasta (6 kb)
Supplementary material 23 (FASTA 6 kb)
294_2013_410_MOESM24_ESM.fasta (7 kb)
Supplementary material 24 (FASTA 6 kb)
294_2013_410_MOESM25_ESM.fasta (11 kb)
Supplementary material 25 (FASTA 10 kb)
294_2013_410_MOESM26_ESM.fasta (2 kb)
Supplementary material 26 (FASTA 1 kb)
294_2013_410_MOESM27_ESM.fasta (2 kb)
Supplementary material 27 (FASTA 2 kb)
294_2013_410_MOESM28_ESM.fasta (10 kb)
Supplementary material 28 (FASTA 10 kb)
294_2013_410_MOESM29_ESM.fasta (15 kb)
Supplementary material 29 (FASTA 14 kb)
294_2013_410_MOESM30_ESM.fasta (4 kb)
Supplementary material 30 (FASTA 4 kb)


  1. Beck N, Lang BF (2010) MFannot, organelle genome annotation webserver (
  2. Begerow D, Stoll M, Bauer R (2006) A phylogenetic hypothesis of Ustilaginomycotina based on multiple gene analyses and morphological data. Mycologia 98:906–916PubMedCrossRefGoogle Scholar
  3. Bullerwell CE, Burger G, Lang BF (2000) A novel motif for identifying Rps3 homologs in fungal mitochondrial genomes. Trends Biochem Sci 25:363–365PubMedCrossRefGoogle Scholar
  4. Cochella L, Green R (2005) An active role for tRNA in decoding beyond codon: anticodon pairing. Science 308:1178–1180PubMedCentralPubMedCrossRefGoogle Scholar
  5. De Rijk P, Wuyts J, De Wachter R (2003) RnaViz2: an improved representation of RNA secondary structure. Bioinformatics 19:299–300PubMedCrossRefGoogle Scholar
  6. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedCentralPubMedCrossRefGoogle Scholar
  7. Felsenstein J (2007) PHYLIP (Phylogeny Inference Package), version 3.67. Distributed by the author. Department of Genome Sciences, University of Washington, SeattleGoogle Scholar
  8. Fickett JW (1982) Recognition of protein coding regions in DNA sequences. Nucleic Acids Res 10:5303–5318PubMedCentralPubMedCrossRefGoogle Scholar
  9. Formighieri EF, Tiburcio RA, Armas ED, Medrano FJ, Shimo H, Carels N, Góes-Neto A, Cotomacci C, Carazzolle MF, Sardinha-Pinto N, Thomazella DP, Rincones J, Digiampietri L, Carraro DM, Azeredo-Espin AM, Reis SF, Deckmann AC, Gramacho K, Gonçalves MS, Moura Neto JP, Barbosa LV, Meinhardt LW, Cascardo JC, Pereira GA (2008) The mitochondrial genome of the phytopathogenic basidiomycete Moniliophthora perniciosa is 109 kb in size and contains a stable integrated plasmid. Mycol Res 112:1136–1152PubMedCrossRefGoogle Scholar
  10. Gioti A, Nystedt B, Li W, Xu J, Andersson A, Averette AF, Münch K, Wang X, Kappauf C, Kingsbury JM, Kraak B, Walker LA, Johansson HJ, Holm T, Lehtiö J, Stajich JE, Mieczkowski P, Kahmann R, Kennell JC, Cardenas ME, Lundeberg J, Saunders CW, Boekhout T, Dawson TL, Munro CA, de Groot PW, Butler G, Heitman J, Scheynius A (2013) Genomic insights into the atopic eczema-associated skin commensal yeast Malassezia sympodialis. MBio 4:e00572–e005712PubMedCentralPubMedCrossRefGoogle Scholar
  11. Grigoriev A (1998) Analyzing genomes with cumulative skew diagrams. Nucleic Acids Res 26:2286–2290PubMedCentralPubMedCrossRefGoogle Scholar
  12. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. System Biol 59:307–321CrossRefGoogle Scholar
  13. Haridas S, Gantt JS (2010) The mitochondrial genome of the wood-degrading basidiomycete Trametes cingulata. FEMS Microbiol Lett 308:29–34PubMedCrossRefGoogle Scholar
  14. Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Thorsten Lumbsch H, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Kõljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüssler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547PubMedCrossRefGoogle Scholar
  15. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282PubMedGoogle Scholar
  16. Knight RD, Freeland SJ, Landweber LF (2001) Rewiring the keyboard: evolvability of the genetic code. Nat Rev Genet 2:49–58PubMedCrossRefGoogle Scholar
  17. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580PubMedCrossRefGoogle Scholar
  18. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645PubMedCrossRefGoogle Scholar
  19. Kurtzman CP, Fell JW (2006) Yeast systematics and phylogeny—implications of molecular identification methods for studies in ecology. In: Rosa C, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 11–30CrossRefGoogle Scholar
  20. Lang BF, Lavrov D, Beck N, Steinberg SV (2012) Mitochondrial tRNA structure, identity, and evolution of the genetic code. In: Bullerwell CE (ed) Organelle genetics: evolution of organelle genomes and gene expression. Springer, Berlin, pp 431–474CrossRefGoogle Scholar
  21. Le S, Gascuel O (2008) An improved general amino-acid replacement matrix. Mol Biol Evol 25:1307–1320PubMedCrossRefGoogle Scholar
  22. Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40:D302–D305PubMedCentralPubMedCrossRefGoogle Scholar
  23. Liu Y, Steenkamp ET, Brinkmann H, Forget L, Philippe H, Lang BF (2009) Phylogenomic analyses predict sistergroup relationship of nucleariids and fungi and paraphyly of zygomycetes with significant support. BMC Evol Biol 9:272PubMedCentralPubMedCrossRefGoogle Scholar
  24. Nosek J, Novotna M, Hlavatovicova Z, Ussery DW, Fajkus J, Tomaska L (2004) Complete DNA sequence of the linear mitochondrial genome of the pathogenic yeast Candida parapsilosis. Mol Genet Genomics 272:173–180PubMedCrossRefGoogle Scholar
  25. Osawa S, Jukes TH (1989) Codon reassignment (codon capture) in evolution. J Mol Evol 28:271–278PubMedCrossRefGoogle Scholar
  26. Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  27. Paquin B, Laforest MJ, Forget L, Roewer I, Wang Z, Longcore J, Lang BF (1997) The fungal mitochondrial genome project: evolution of fungal mitochondrial genomes and their gene expression. Curr Genet 31:380–395PubMedCrossRefGoogle Scholar
  28. Philippsen P, Stotz A, Scherf C (1991) DNA of Saccharomyces cerevisiae. Methods Enzymol 194:169–182PubMedGoogle Scholar
  29. Ronquist F, Teslenko M, van der Mark P, Ayres D, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. System Biol 61:539–542CrossRefGoogle Scholar
  30. Schmeing TM, Voorhees RM, Kelley AC, Ramakrishnan V (2011) How mutations in tRNA distant from the anticodon affect the fidelity of decoding. Nat Struct Mol Biol 18:432–436PubMedCentralPubMedCrossRefGoogle Scholar
  31. Sengupta S, Yang X, Higgs PG (2007) The mechanisms of codon reassignments in mitochondrial genetic codes. J Mol Evol 64:662–688PubMedCentralPubMedCrossRefGoogle Scholar
  32. Sipiczki M, Kajdacsi E (2009) Jaminaea angkorensis gen. nov., sp. nov., a novel anamorphic fungus containing an S943 nuclear small-subunit rRNA group IB intron represents a basal branch of Microstromatales. Int J Syst Evol Microbiol 59:914–920PubMedCrossRefGoogle Scholar
  33. Stone CL, Buitrago ML, Boore JL, Frederick RD (2010) Analysis of the complete mitochondrial genome sequences of the soybean rust pathogens Phakopsora pachyrhizi and P. meibomiae. Mycologia 102:887–897PubMedCrossRefGoogle Scholar
  34. Stothard P (2000) The sequence manipulation suite: javaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28:1102–1104PubMedGoogle Scholar
  35. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCentralPubMedCrossRefGoogle Scholar
  36. Wang Y, Zeng F, Hon CC, Zhang Y, Leung FC (2008) The mitochondrial genome of the Basidiomycete fungus Pleurotus ostreatus (oyster mushroom). FEMS Microbiol Lett 280:34–41PubMedCrossRefGoogle Scholar
  37. Wei YH, Liou GY, Liu HY, Lee FL (2011) Sympodiomycopsis kandeliae sp. nov., a basidiomycetous anamorphic fungus from mangroves, and reclassification of Sympodiomycopsis lanaiensis as Jaminaea lanaiensis comb. nov. Int J Syst Evol Microbiol 61:469–473PubMedCrossRefGoogle Scholar
  38. Xu J, Saunders CW, Hu P, Grant RA, Boekhout T, Kuramae EE, Kronstad JW, Deangelis YM, Reeder NL, Johnstone KR, Leland M, Fieno AM, Begley WM, Sun Y, Lacey MP, Chaudhary T, Keough T, Chu L, Sears R, Yuan B, Dawson TL Jr (2007) Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens. Proc Natl Acad Sci USA 104:18730–18735PubMedCrossRefGoogle Scholar
  39. Yang RY, Li HT, Zhu H, Zhou GP, Wang M, Wang L (2012) Draft genome sequence of CBS 2479, the standard type strain of Trichosporon asahii. Eukaryot Cell 11:1415–1416PubMedCentralPubMedCrossRefGoogle Scholar
  40. Yoon H, You YH, Woo JR, Park YJ, Kong WS, Lee BM, Kim JG (2012) The mitochondrial genome of the white-rot fungus Flammulina velutipes. J Gen Appl Microbiol 58:331–337PubMedCrossRefGoogle Scholar
  41. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829PubMedCrossRefGoogle Scholar
  42. Zhao XQ, Aizawa T, Schneider J, Wang C, Shen RF, Sunairi M (2013) Complete mitochondrial genome of the aluminum-tolerant fungus Rhodotorula taiwanensis RS1 and comparative analysis of Basidiomycota mitochondrial genomes. Microbiology Open 2:308–317PubMedCrossRefGoogle Scholar
  43. Zuccaro A, Lahrmann U, Guldener U, Langen G, Pfiffi S, Biedenkopf D, Wong P, Samans B, Grimm C, Basiewicz M, Murat C, Martin F, Kogel KH (2011) Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog 7:E1002290PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Eva Hegedusova
    • 1
  • Brona Brejova
    • 2
  • Lubomir Tomaska
    • 3
  • Matthias Sipiczki
    • 4
  • Jozef Nosek
    • 1
  1. 1.Department of Biochemistry, Faculty of Natural SciencesComenius UniversityBratislavaSlovak Republic
  2. 2.Department of Computer Science, Faculty of Mathematics, Physics and InformaticsComenius UniversityBratislavaSlovak Republic
  3. 3.Department of Genetics, Faculty of Natural SciencesComenius UniversityBratislavaSlovak Republic
  4. 4.Department of Genetics and Applied MicrobiologyUniversity of DebrecenDebrecenHungary

Personalised recommendations