Skip to main content

Advertisement

Log in

A split luciferase complementation assay for studying in vivo protein–protein interactions in filamentous ascomycetes

  • Technical Note
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Protein–protein interactions play important roles in controlling many cellular events. To date, several techniques have been developed for detection of protein–protein interactions in living cells, among which split luciferase complementation has been applied in animal and plant cells. Here, we examined whether the split luciferase assay could be used in filamentous ascomycetes, such as Gibberella zeae and Cochliobolus heterostrophus. The coding sequences of two strongly interacting proteins (the F-box protein, FBP1, and its partner SKP1) in G. zeae, under the control of the cryparin promoter from Cryphonectria parasitica, were translationally fused to the C- and N-terminal fragments of firefly luciferase (luc), respectively. Each fusion product inserted into a fungal transforming vector carrying the gene for resistance to either geneticin or hygromycin B, was transformed into both fungi. We detected complementation of split luciferase proteins driven by interaction of the two fungal proteins with a high luminescence intensity-to-background ratio only in the fungal transformants expressing both N-luc and C-luc fusion constructs. Using this system, we also confirmed a novel protein interaction between transcription factors, GzMCM1 and FST12 in G. zeae, which could hardly be proven by the yeast two-hybrid method. This is the first study demonstrating that monitoring of split luciferase complementation is a sensitive and efficient method of studying in vivo protein–protein interactions in filamentous ascomycetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barnard E, McFerran NV, Nelson J, Timson DJ (2007) Detection of protein–protein interactions using protein-fragment complementation assays (PCA). Curr Proteomics 4:17–27

    Article  CAS  Google Scholar 

  • Bender A, Sprague GF (1987) MATαLphal protein, a yeast transcription activator, binds synergistically with a second protein to a set of cell-type-specific genes. Cell 50:681–691

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. J Biol Chem 72:248–254

    CAS  Google Scholar 

  • Bridge PD, Kokubun T, Simmonds MSJ (2004) Protein extraction from fungi. In: Cutler P (ed) Protein purification protocols. Methods in molecular biology, 2nd edn, vol 244. Humana Press Inc, Totowa, pp 37–46

  • Chen H, Zou Y, Shang Y, Lin H, Wang Y, Cai R, Tang X, Zhou JM (2008) Firefly luciferase complementation imaging assay for protein–protein interactions in plants. Plant Physiol 146:368–376

    Article  PubMed  CAS  Google Scholar 

  • Chi MH, Park SY, Lee YH (2009) A quick and safe method for fungal DNA extraction. Plant Pathol J 25:108–111

    Article  CAS  Google Scholar 

  • Cullen D, Leong SA, Wilson LJ, Henner DJ (1987) Transformation of Aspergillus nidulans with the hygromycin-resistance gene, hph. Gene 57:21–26

    Article  PubMed  CAS  Google Scholar 

  • Figeys S (2003) Novel approaches to map protein interactions. Curr Opin Biotechnol 14:119–125

    Article  PubMed  CAS  Google Scholar 

  • Fujikawa Y, Kato N (2007) Split luciferase complementation assay to study protein–protein interactions in Arabidopsis protoplasts. Plant J 52:185–195

    Article  PubMed  CAS  Google Scholar 

  • Galarneau A, Primeau M, Trudeau LE, Michnick SW (2002) β-Lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein–protein interactions. Nat Biotechnol 20:619–622

    Article  PubMed  CAS  Google Scholar 

  • Golemis EA, Serbriiskii I, Gyuris J, Brent R (1996) Interaction trap/two-hybrid system to identify interacting proteins. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl A (eds) Current protocols in molecular biology. Willey, New York, pp 20.1.1–20.1.16

  • Hamer JE, Timberlake WE (1987) Functional organization of the Aspergillus nidulans trpC promoter. Mol Cell Biol 7:2352–2359

    PubMed  CAS  Google Scholar 

  • Han YK, Kim MD, Lee SH, Yun SH, Lee YW (2007) A novel F-box protein involved in sexual development and pathogenesis in Gibberella zeae. Mol Microbiol 63:768–779

    Article  PubMed  CAS  Google Scholar 

  • Hu CD, Kerppola TK (2002) Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9:789–798

    Article  PubMed  CAS  Google Scholar 

  • Kaihara A, Kawai Y, Sato M, Ozawa T, Umezawa Y (2003) Locating a protein–protein interaction in living cells via Renilla luciferase complementation. Anal Chem 75:4176–4181

    Article  PubMed  CAS  Google Scholar 

  • Kim HK, Yun SH (2011) Evaluation of potential reference genes for quantitative RT-PCR analysis in Fusarium graminearum under different culture conditions. Plant Pathol J 27:301–309

    Article  CAS  Google Scholar 

  • Kim HK, Lee T, Yun SH (2008) A putative pheromone signaling pathway is dispensable for self-fertility in the homothallic ascomycete Gibberella zeae. Fungal Genet Biol 45:1188–1196

    Article  PubMed  CAS  Google Scholar 

  • Kwon BR, Kim MJ, Park JA, Chung HJ, Kim JM, Park SM, Yun SH, Yang MS, Kim DH (2009) Assessment of the core cryparin promoter from Cryphonectria parasitica for heterologous expression in filamentous fungi. Appl Microbiol Biotechnol 83:339–348

    Article  PubMed  CAS  Google Scholar 

  • Leach J, Lang BR, Yoder OC (1982) Methods for selection of mutants and in vivo culture of Cochliobolus heterostrophus. J Gen Microbiol 128:1719–1729

    Google Scholar 

  • Lee SH, Lee S, Choi D, Lee YW, Yun SH (2006) Identification of the down-regulated genes in a mat1-2-deleted strain of Gibberella zeae, using cDNA subtraction and microarray analysis. Fungal Genet Biol 43:295–310

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Han K, Yun SH, Lee YW (2009) Roles of the glyoxylate and methylcitrate cycles in sexual development and virulence in the cereal pathogen Gibberella zeae. Eukaryot Cell 8:1155–1164

    Article  PubMed  CAS  Google Scholar 

  • Leslie JF, Summerell BA (2006) The Fusarium lab manual. Blackwell, Ames

    Google Scholar 

  • Li D, Bobrowicz P, Wilkinson HH, Ebbole DJ (2005) A mitogen-activated protein kinase pathway essential for mating and contributing to vegetative growth in Neurospora crassa. Genetics 170:1091–1104

    Article  PubMed  CAS  Google Scholar 

  • Luker KE, Smith MC, Luker GD, Gammon ST, Piwnica-Worms H, Piwnica-Worms D (2004) Kinetics of regulated protein–protein interactions revealed with firefly luciferase complementation imaging in cells and living animals. Proc Natl Acad Sci USA 101:12288–12293

    Article  PubMed  CAS  Google Scholar 

  • McMullen M, Jones R, Gallenberg D (1997) Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis 81:1340–1348

    Article  Google Scholar 

  • Meng JJ, Rojas M, Bacon W, Stickney JT, Ip W (2005) Methods to study protein–protein interactions. Methods Mol Biol 289:341–358

    PubMed  Google Scholar 

  • Messenguy F, Dubois E (2003) Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene 316:1–21

    Article  PubMed  CAS  Google Scholar 

  • Michnick SW (2003) Protein fragment complementation strategies for biochemical network mapping. Curr Opin Biotechnol 14:610–617

    Article  PubMed  CAS  Google Scholar 

  • Morgan LW, Greene AV, Bell-Pedersen D (2003) Circadian and light-induced expression of luciferase in Neurospora crassa. Fungal Genet Biol 38:327–332

    Article  PubMed  CAS  Google Scholar 

  • Nolting N, Pöggeler S (2006a) A MADS box protein interacts with a mating-type protein and is required for fruiting body development in the homothallic ascomycete Sordaria macrospora. Eukaryot Cell 5:1043–1056

    Article  PubMed  CAS  Google Scholar 

  • Nolting N, Pöggeler S (2006b) A STE12 homologue of the homothallic ascomycete Sordaria macrospora interacts with the MADS box protein MCM1 and is required for ascosporogenesis. Mol Microbiol 62:853–868

    Article  PubMed  CAS  Google Scholar 

  • Paulmurugan R, Gambhir SS (2007) Combinatorial library screening for developing an improved split-firefly luciferase fragment-assisted complementation system for studying protein–protein interactions. Anal Chem 79:2346–2353

    Article  PubMed  CAS  Google Scholar 

  • Paulmurugan R, Umezawa Y, Gambhir S (2002) Noninvasive imaging of protein–protein interactions in living subjects by using reporter protein complementation and reconstitution strategies. Proc Natl Acad Sci USA 99:15608–15613

    Article  PubMed  CAS  Google Scholar 

  • Pelletier JN, Campbell-Valois FX, Michnick SW (1998) Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally designed fragments. Proc Natl Acad Sci USA 95:12141–12146

    Article  PubMed  CAS  Google Scholar 

  • Remy I, Michnick SW (2004) Mapping biochemical networks with protein fragment complementation assays. Methods Mol Biol 261:411–426

    PubMed  CAS  Google Scholar 

  • Rispail N, Di Pietro A (2010) The homeodomain transcription factor Ste12 Connecting fungal MAPK signalling to plant pathogenicity. Commun Integr Biol 3:327–332

    Article  PubMed  Google Scholar 

  • Rossi F, Charlton CA, Blau HM (1997) Monitoring protein–protein interactions in intact eukaryotic cells by β-galactosidase complementation. Proc Natl Acad Sci USA 94:8405–8410

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Plainview

    Google Scholar 

  • Shore P, Sharroks AD (1995) The MADS-box family of transcription factors. Eur J Biochem 229:1–13

    Article  PubMed  CAS  Google Scholar 

  • Son H, Seo YS, Min K, Park AR, Lee J, Jin JM, Lin Y, Cao P, Hong SY, Kim EK, Lee SH, Cho A, Lee S, Kim MG, Kim Y, Kim JE, Kim JC, Choi GJ, Yun SH, Lim JY, Kim M, Lee YH, Choi YD, Lee YW (2011) A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum. PLoS Pathog 7:e1002310. doi:10.1371/journal.ppat.1002310

    Article  PubMed  CAS  Google Scholar 

  • Tsuji G, Fujii S, Tsuge S, Shiraishi T, Kubo Y (2003) The Colletotrichum lagenarium Ste12-like gene CST1 is essential for appressorium penetration. Mol Plant Microbe Interact 16:315–325

    Article  PubMed  CAS  Google Scholar 

  • Vallim MA, Miller KA, Miller BL (2000) Aspergillus SteA (sterile12-like) is a homeodomain-C2/H2-Zn + 2 finger transcription factor required for sexual reproduction. Mol Microbiol 36:290–301

    Article  PubMed  CAS  Google Scholar 

  • Wilson CGM, Magliery TJ, Regan L (2004) Detecting protein interactions with GFP-fragment reassembly. Nat Methods 1:255–262

    Article  PubMed  CAS  Google Scholar 

  • Yoder OC (1988) Cochliobolus heterostrophus, cause of Southern Corn Leaf Blight. In: Sidhu GS (ed) Genetics of plant pathogenic fungi. Academic Press, San Diego, pp 93–112

    Google Scholar 

  • Yun SH (1998) Molecular genetics and manipulation of pathogenicity and mating determinants in Mycosphaerella zeae-maydis and Cochliobolus heterostrophus. PhD thesis. Cornell University, Ithaca

Download references

Acknowledgments

This research was supported by the Agricultural Research Center program of the Ministry for Food, Agriculture, Forestry and Fisheries, Korea, and by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (2009-0075256). We thank Ae Ran Park, Seoul National University for technical assistance in the western blot analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Hwan Yun.

Additional information

Communicated by U. Kueck.

H.-K. Kim and E. J. Cho equally contributed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 183 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HK., Cho, E.J., Jo, S. et al. A split luciferase complementation assay for studying in vivo protein–protein interactions in filamentous ascomycetes. Curr Genet 58, 179–189 (2012). https://doi.org/10.1007/s00294-012-0375-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-012-0375-5

Keywords

Navigation