Skip to main content
Log in

Transformation and electrophoretic karyotyping of Coniochaeta ligniaria NRRL30616

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Coniochaeta ligniaria NRRL30616 is an ascomycete that grows with yeast-like appearance in liquid culture. The strain has potential utility for conversion of fibrous biomass to fuels or chemicals. Furans and other inhibitory compounds in lignocellulosic biomass are metabolized by NRRL30616, facilitating subsequent microbial fermentation of biomass sugars. This study undertook initial characterization of the genetic system of C.ligniaria NRRL30616. Transformation using hygromycin as a dominant selectable marker was achieved using protoplasts generated by incubating cells in 1% (v/v) β-mercaptoethanol, followed by cell wall-digesting enzymes. Thirteen chromosomes with an estimated total size of 30.1 Mb were detected in C. ligniaria. The GC content of chromosomal DNA and of coding regions from cDNA sequences were 49.2 and 51.9%, respectively. This study is the first report of genome size, electrophoretic karyotype, and transformation system for a member of the Coniochaetales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Atkins SD, Mauchline TH, Kerry BR, Hirsch PR (2004) Development of a transformation system for the nematophagous fungus Pochonia chlamydosporia. Mycol Res 108:654–661

    Article  PubMed  CAS  Google Scholar 

  • Beadle J, Wright M, NcNeely L, Bennet JW (2003) Electrophoretic karyotype analysis in fungi. Adv Appl Microbiol 53:243–270

    Article  PubMed  CAS  Google Scholar 

  • Cabañas MJ, Vázquez D, Modolell J (1978) Dual interference of hygromycin B with ribosomal translocation and with aminoacyl-tRNA recognition. Eur J Biochem 87:21–27

    Article  PubMed  Google Scholar 

  • Damm U, Fourie PH, Crous PW (2010) Coniochaeta (Lecythophora), Collophora gen. nov. and Phaeomoniella species associated with wood necroses of Prunus trees. Persoonia 24:60–80

    PubMed  CAS  Google Scholar 

  • Davies B (1985) Factors influencing protoplast isolation. In: Peberdy JF, Ferenczy L (eds) Fungal protoplasts: application in biochemistry and genetics. Marcel Dekker, New York, pp 45–71

    Google Scholar 

  • García D, Stchigel AM, Cano J, Calduch M, Hawksworth DL, Guarro J (2006) Molecular phylogeny of Coniochaetales. Mycol Res 110:1271–1289

    Article  PubMed  Google Scholar 

  • Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (1981) Manual of methods for general bacteriology. American Society for Microbiology, Washington DC

    Google Scholar 

  • Gregory TR, Nicol JA, Tamm H, Kullman B, Kullman K, Leitch IJ, Murray BG, Kapraun DF, Greilhuber J, Bennet MD (2007) Eukaryotic genome size database. Nucleic Acids Res 35:D332–D338

    Article  PubMed  CAS  Google Scholar 

  • Gritz L, Davies J (1983) Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene 25:179–188

    Article  PubMed  CAS  Google Scholar 

  • Holloman DW, Butters JA, Barker H (1997) Tubulins: a target for antifungal agents. In: Bentley PH, O’Hanlon PJ (eds) Anti-infectives: recent advances in chemistry and structure–activity relationships, Ch 11. Royal Society of Chemistry, London

    Google Scholar 

  • Horng JS, Chang PK, Pestka JJ, Linz JE (1990) Development of a homologous transformation system for Aspergillus parasiticus with the gene encoding nitrate reductase. Mol Gen Genet 224:294–296

    Article  PubMed  CAS  Google Scholar 

  • Huhndorf SM, Miller AN, Fernández FA (2004) Molecular systematics of the Sordariales: the order and the family Lasiosphaeriaceae redefined. Mycologia 96:368–387

    Article  PubMed  CAS  Google Scholar 

  • Hynes MJ, Corrick CM, King JA (1983) Isolation of genomic clones containing the amdS gene of Aspergillus nidulans and their use in the analysis of structural and regulatory mutations. Mol Cell Biol 3:1430–1439

    PubMed  CAS  Google Scholar 

  • Johnson JL (1994) Similarity analysis of DNAs. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington DC, pp 656–682

    Google Scholar 

  • Kullman B, Tamm H, Kullman K (2005) Fungal genome size database. http://www.zbi.ee/fungal-genomesize. Accessed 21 October, 2010

  • López MJ, Nichols NN, Dien BS, Moreno J, Bothast RJ (2004) Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates. Appl Microbiol Biotechnol 64:125–131

    Article  PubMed  Google Scholar 

  • Nichols NN, Sharma LN, Mowery RA, Chambliss CK, Van Walsum GP, Dien BS, Iten LB (2008) Fungal metabolism of fermentation inhibitors present in corn stover dilute acid hydrolysate. Enzyme Microbial Technol 42:624–630

    Article  CAS  Google Scholar 

  • Nichols NN, Dien BS, Cotta MA (2010) Fermentation of bioenergy crops into ethanol using biological abatement for removal of inhibitors. Bioresour Technol 101:7545–7550

    Article  PubMed  CAS  Google Scholar 

  • Orbach MJ, Porro EB, Yanofsky C (1986) Cloning and characterization of the gene for β-tubulin from a benomyl-resistant mutant of Neurospora crassa and its use as a dominant selectable marker. Mol Cell Biol 6:2452–2461

    PubMed  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I. Inhibition and detoxification. Bioresour Technol 74:17–24

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW, Irwin N, Janssen KA (2001) Molecular cloning. A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Staben C, Jensen B, Singer M, Pollock J, Schechtman M, Kinsey J, Selker E (1989) Use of a bacterial hygromycin B resistance gene as a dominant selectable marker in Neurospora crassa transformation. Fungal Genet Newsl 36:79–81

    Google Scholar 

  • Storck R (1966) Nucleotide composition of nucleic acids of fungi. II. Deoxyribonucleic acids. J Bacteriol 91:227–230

    PubMed  CAS  Google Scholar 

  • Unkles SE, Campbell EI, Carrez D, Grieve C, Contreras R, Fiers W, van den Hondel CAMJJ, Kinghorn JR (1989) Transformation of Aspergillus niger with the homologous nitrate reductase gene. Gene 78:157–166

    Article  PubMed  CAS  Google Scholar 

  • Weber E (2002) The Lecythophora–Coniochaeta complex I. Morphological studies on Lecythophora species isolated from Picea abies. Nova Hedwigia 74:159–185

    Article  Google Scholar 

  • Weber E, Görke C, Begerow D (2002) The LecythophoraConiochaeta complex II. Molecular studies based on sequences of the large subunit of ribosomic DNA. Nova Hedwigia 74:187–200

    Article  Google Scholar 

Download references

Acknowledgments

We thank Sarah E. Frazer, Kristina M. Glenzinski, and Rhonda L. Zeltwanger for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy N. Nichols.

Additional information

Communicated by H. Osiewacz.

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer.

Nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under accession numbers HQ197357 and HS107146-HS107191.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nichols, N.N., Szynkarek, M.P., Skory, C.D. et al. Transformation and electrophoretic karyotyping of Coniochaeta ligniaria NRRL30616. Curr Genet 57, 169–175 (2011). https://doi.org/10.1007/s00294-010-0332-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-010-0332-0

Keywords

Navigation