Skip to main content

Identification and function of a polyketide synthase gene responsible for 1,8-dihydroxynaphthalene-melanin pigment biosynthesis in Ascochyta rabiei

Abstract

Ascochyta rabiei produces and accumulates one of the well-known fungal polyketides, 1,8-dihydroxynaphthalene-melanin pigment (DHN-melanin), in asexual and sexual fruiting bodies. Degenerate PCR primers were used to isolate an ArPKS1 of A. rabiei encoding a polypeptide with high similarity to polyketide synthase (PKS) involved in biosynthesis of DHN-melanin in other ascomycetous fungi. Site-directed mutagenesis of ArPKS1 in A. rabiei generated melanin-deficient pycnidial mutants but caused no significant reduction of pathogenicity to chickpea. Pycnidiospores in ArPKS1-mutant pycnidia showed higher sensitivity to UV light exposure compared to pycnidiospores in melanized pycnidia of the wild-type progenitor isolate. Integration of an orthologous PKS1 gene from Bipolaris oryzae into the genome of the mutants complemented the dysfunctional ArPKS1 gene. This study demonstrated that A. rabiei uses a DHN-melanin pathway for pigmentation of pycnidia and this molecule may protect pycnidiospores from UV irradiation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Akamatsu H, Itoh Y, Kodama M, Otani H, Kohmoto K (1997) AAL-toxin-deficient mutants of Alternaria alternata tomato pathotype by restriction enzyme-mediated integration. Phytopathology 87:967–972

    Article  PubMed  CAS  Google Scholar 

  • Akamatsu HO, Stone LJ, Sigler AA, Chilvers MI, Arie T, Peever TL (2006) Heterologous expression of fluorescence protein in the phytopathogenic fungus Ascochyta rabiei and visualization of the fungus in planta. Phytopathology 96:S4

    Article  Google Scholar 

  • Barve MP, Arie T, Salimath SS, Muehlbauer FJ, Peever TL (2003) Cloning and characterization of the mating type (MAT) locus from Ascochyta rabiei (teleomorph: Didymella rabiei) and a MAT phylogeny of legume-associated Ascochyta spp. Fungal Genet Biol 39:151–167

    Article  PubMed  CAS  Google Scholar 

  • Bell AA, Wheeler MH (1986) Biosynthesis and functions of fungal melanins. Annu Rev Phytopathol 24:411–451

    Article  CAS  Google Scholar 

  • Bingle LE, Simpson TJ, Lazarus CM (1999) Ketosynthase domain probes identify two subclasses of fungal polyketide synthase genes. Fungal Genet Biol 26:209–223

    Article  PubMed  CAS  Google Scholar 

  • Braun EJ, Howard RJ (1994) Adhesion of Cochliobolus heterostrophus conidia and germlings to leaves and artificial surfaces. Exp Mycol 18:211–220

    Article  Google Scholar 

  • Butler MJ, Day AW (1998) Fungal melanins: a review. Can J Microbiol 44:1115–1136

    Article  CAS  Google Scholar 

  • Chen W, Muehlbauer FJ (2003) An improved technique for virulence assay of Ascochyta rabiei on chickpea. Int Chickpea Pigeonpea Newsl 10:31–33

    CAS  Google Scholar 

  • Chen W, Sharma KD, Wheeler MH (2004a) Demonstration of the 1,8-dihydroxynaphthalene melanin pathway in Ascochyta rabiei. Mycologia 55:S11

    Google Scholar 

  • Chen W, Sharma KD, Wheeler MH, Muehlbauer FJ (2004b) The role of melanin production in Ascochyta blight of chickpea. Phytopathology 94:S132

    Article  Google Scholar 

  • Chérif M, Chilvers MI, Akamatsu H, Peever TL, Kaiser WJ (2006) Cloning of the mating type locus from Ascochyta lentis (teleomorph: Didymella lentis) and development of a multiplex PCR mating assay for Ascochyta species. Curr Genet 50:203–215

    Article  PubMed  CAS  Google Scholar 

  • Eliahu N, Igbaria A, Rose MS, Horwitz BA, Lev S (2007) Melanin biosynthesis in the maize pathogen Cochliobolus heterostrophus depends on two mitogen-activated protein kinases, Chk1 and Mps1, and the transcription factor Cmr1. Eukaryotic Cell 6:421–429

    Article  PubMed  CAS  Google Scholar 

  • Engh I, Nowrousian M, Kück U (2007) Regulation of melanin biosynthesis via dihydroxynaphthalene pathway is dependent on sexual development in the ascomycete Sordaria macrospora. FEMS Microbiol Lett 275:62–70

    Article  PubMed  CAS  Google Scholar 

  • Frederick BA, Caesar-Tonthat T-C, Wheeler MH, Sheehan KB, Edens WA, Henson JM (1999) Isolation and characterization of Gaeumannomyces graminis var. graminis melanin mutants. Mycol Res 103:99–110

    Article  CAS  Google Scholar 

  • Fry WE, Yoder OC, Apple AE (1984) Influence of naturally occurring marker genes on the ability of Cochliobolus heterostrophus to induce field epidemics of Southern corn leaf blight. Phytopathology 74:175–178

    Article  Google Scholar 

  • Guillen A, Turgeon BG, Thorson PR, Bronson CR, Yoder OC (1994) Linkage among melanin biosynthetic mutations in Cochliobolus heterostrophus. Fungal Genet Newsl 41:41–42

    Google Scholar 

  • Hopwood DA (1997) Genetic contributions to understanding polyketide synthases. Chem Rev 97:2465–2497

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Joyce P, Lakner C, Ronquist F (2008) Bayesian analysis of amino acid substitution models. Philos Trans R Soc Lond B Biol Sci 363:3941–3953

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson CR, Fujii I (1995) Polyketide synthase gene manipulation: a structure–function approach in engineering novel antibiotics. Annu Rev Microbiol 49:201–238

    Article  PubMed  CAS  Google Scholar 

  • Jayakumar P, Gossen BD, Gan YT, Warkentin TD, Banniza S (2005) Ascochyta blight of chickpea: infection and host resistance mechanisms. Can J Plant Pathol 27:499–509

    CAS  Google Scholar 

  • Kawamura C, Tsujimoto T, Tsuge T (1999) Targeted disruption of a melanin biosynthesis gene affects conidial development and UV tolerance in the Japanese pear pathotype of Alternaria alternata. Mol Plant–Microbe Interact 12:59–63

    Article  PubMed  CAS  Google Scholar 

  • Keller NP, Brown D, Butchko RAE, Fernandes M, Kelkar H, Nesbitt C, Segner S, Bhatnagar D, Cleveland TE, Adams TH (1995) A conserved polyketide mycotoxin gene cluster in Aspergillus nidulans. In: Eklund M, Richard RL, Mise M (eds) Molecular approaches to food safety issues involving toxic microorganisms. Alaken Inc, Fort Collins, pp 263–277

    Google Scholar 

  • Kimura N, Tsuge T (1993) Gene cluster involved in melanin biosynthesis of the filamentous fungus Alternaria alternata. J Bacteriol 175:4427–4435

    PubMed  CAS  Google Scholar 

  • Kroken S, Glass NL, Taylor JW, Yoder OC, Turgeon BG (2003) Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci USA 100:15670–15675

    Article  PubMed  CAS  Google Scholar 

  • Kubo Y, Suzuki K, Furusawa I, Yamamoto M (1982) Effect of tricyclazole on appressorial pigmentation and penetration from appressoria of Colletotrichum lagenarium. Phytopathology 72:1198–1200

    Article  CAS  Google Scholar 

  • Kubo Y, Tsuda M, Furusawa I, Shishiyama J (1989) Genetic analysis of genes involved in melanin biosynthesis of Cochliobolus miyabeanus. Exp Mycol 13:77–84

    Article  CAS  Google Scholar 

  • Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA (2003) Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 38:143–158

    Article  PubMed  CAS  Google Scholar 

  • Mel’nik VA, Braun U, Hagedorn G (2000) Key to the fungi of the genus Ascochyta Lib. (Coelomycetes). Parey Buchverlag Berlin, Berlin

    Google Scholar 

  • Mendgen K, Hahn M, Deising H (1996) Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annu Rev Phytopathol 34:367–386

    Article  PubMed  CAS  Google Scholar 

  • Moriwaki A, Kihara J, Kobayashi T, Tokunaga T, Arase S, Honda Y (2004) Insertional mutagenesis and characterization of a polyketide synthase gene (PKS1) required for melanin biosynthesis in Bipolaris oryzae. FEMS Microbiol Lett 238:1–8

    PubMed  CAS  Google Scholar 

  • Namiki F, Matsunaga M, Okuda M, Inoue I, Nishi K, Fujita Y, Tsuge T (2001) Mutation of an arginine biosynthesis gene causes reduced pathogenicity in Fusarium oxysporum f. sp. melonis. Mol Plant-Microbe Interact 14:580–584

    Article  PubMed  CAS  Google Scholar 

  • Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623

    PubMed  CAS  Google Scholar 

  • Peever TL, Canihos Y, Olsen L, Ibañez A, Liu Y-C, Timmer LW (1999) Population genetic structure and host specificity of Alternaria spp. causing brown spot of Minneola tangelo and rough lemon in Florida. Phytopathology 89:851–860

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen JB, Hanau RM (1989) Exogenous scytalone restores appressorial melanization and pathogenicity in albino mutants of Colletotrichum graminicola. Can J Plant Pathol 11:349–352

    Google Scholar 

  • Rehnstrom AL, Free SJ (1996) The isolation and characterization of melanin-deficient mutants of Monilinia fructicola. Physiol Mol Plant Pathol 49:321–330

    Article  Google Scholar 

  • Rotem J, Aust HJ (1991) The effect of ultraviolet and solar radiation and temperature on survival of fungal propagules. J Phytopathol 133:76–84

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Singaravelan N, Grishkan I, Beharav A, Wakamatsu K, Ito S (2008) Adaptive melanin response of the soil fungus Aspergillus niger to UV radiation stress at “Evolution Canyon”, Mount Carmel, Israel. PLoS One 3:e2993

    Article  PubMed  CAS  Google Scholar 

  • Takano Y, Kubo Y, Shimizu K, Mise K, Okuno T, Furusawa I (1995) Structural analysis of PKS1, a polyketide synthase gene involved in melanin biosynthesis in Colletotrichum lagenarium. Mol Gen Genet 249:162–167

    Article  PubMed  CAS  Google Scholar 

  • Tanabe K, Park P, Tsuge T, Kohmoto K, Nishimura S (1995) Characterization of the mutants of Alternaria alternata Japanese pear pathotype deficient in melanin production and their pathogenicity. Ann Phytopathol Soc Jpn 61:27–33

    CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Trapero-Casas A, Kaiser WJ (1992) Development of Didymella rabiei, the teleomorph of Ascochyta rabiei, on chickpea straw. Phytopathology 82:1261–1266

    Article  Google Scholar 

  • White D, Chen W (2007) Towards identifying pathogenic determinants of the chickpea pathogen Ascochyta rabiei. Eur J Plant Pathol 119:3–12

    Article  Google Scholar 

  • Wolkow PM, Sisler HD, Vigil EL (1983) Effect of inhibitors of melanin biosynthesis on structure and function of appressoria of Colletotrichum lindemuthianum. Physiol Plant Pathol 22:55–71

    Article  Google Scholar 

  • Woloshuk CP, Sisler HD, Tokousbalides MC, Dutky SR (1980) Melanin biosynthesis in Pyricularia oryzae: site of tricyclazole inhibition and pathogenicity of melanin-deficient mutants. Pestic Biochem Physiol 14:256–264

    Article  CAS  Google Scholar 

  • Woloshuk CP, Sisler HD, Vigil EL (1983) Action of the antipenetrant, tricyclazole, on appressoria of Pyricularia oryzae. Physiol Plant Pathol 22:245–259

    CAS  Google Scholar 

  • Yoder OC (1988) Cochliobolus heterostrophus, cause of southern corn leaf blight. In: Sidhu GS (ed) Genetics of plant pathogenic fungi. Academic Press, San Diego, pp 93–112

    Google Scholar 

  • Yoder OC, Turgeon BG (2001) Fungal genomics and pathogenicity. Curr Opin Plant Biol 4:315–321

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. T. Tsuge (Nagoya University, Japan) and Dr. J. Kihara (Shimane University, Japan) for providing pSH75 and pII99, and pUCPKS, respectively. We are grateful to Dr. M. Kodama (Tottori University, Japan) for providing PCR primers, T.L. Horton, L.J. Stone, and A.A. Sigler for technical assistance, Dr. A. Pastor (Michigan State University) for assistance with the cryotome, and Dr. Z. Abdo (University of Idaho), Dr. T. Takizawa (Washington State University), and Dr. M. Egusa (Tottori University) for help with statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajime O. Akamatsu.

Additional information

Communicated by A. Brakhage.

Sequence data reported are available in GenBank database under the accession numbers GQ150544–GQ150552.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary table (PDF 32 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Akamatsu, H.O., Chilvers, M.I., Stewart, J.E. et al. Identification and function of a polyketide synthase gene responsible for 1,8-dihydroxynaphthalene-melanin pigment biosynthesis in Ascochyta rabiei . Curr Genet 56, 349–360 (2010). https://doi.org/10.1007/s00294-010-0306-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-010-0306-2

Keywords

  • Co-transformation
  • Dothideomycetes
  • Environmental stress
  • Fungal pigment
  • Secondary metabolism