Skip to main content
Log in

Gene silencing of transgenes inserted in the Aspergillus nidulans alcM and/or alcS loci

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

While carrying out a systematic disruption of the genes of unknown function in the alc gene cluster from the filamentous fungus Aspergillus nidulans, we observed a strong diminution of the transcription of markers inserted in the alcS gene. This was found to be the case for the two markers tested, nadA (from A. nidulans) and pyrG (from A. fumigatus) involved in purine utilization and uracil/uridine biosynthetic pathway, respectively. The same phenomenon was also observed with insertion of the nadA gene in the alcM locus, another gene of the alc cluster. In the case of nadA, the level of expression was directly correlated to the ability of the corresponding strains to grow on adenine as a sole nitrogen source. The insertion of the pyrG marker into alcS complemented perfectly vegetative growth, but did not allow a proper sexual cycle. This suggests that the lowered pyrG expression is not sufficient to provide the intracellular concentration of pyrimidines required for the sexual cycle. Thus, due caution must be exercised when disrupting genes with pyrG, one of the most commonly employed markers, especially if the gene to be disrupted is involved or suspected to be involved in the sexual cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bok JW, Noordermeer D, Kale SP, Keller NP (2006) Secondary metabolic gene cluster silencing in Aspergillus nidulans. Mol Microbiol 61:1636–1645

    Article  PubMed  CAS  Google Scholar 

  • Bruggeman J, Debets AJM, Hoekstra RF (2004) Selection arena in Aspergillus nidulans. Fungal Genet Biol 41:181–188

    Article  PubMed  Google Scholar 

  • Cánovas D, Andrianopoulos A (2006) Developmental regulation of the glyoxylate cycle in the human pathogen Penicillium marneffei. Mol Microbiol 62:1725–1738

    Article  PubMed  CAS  Google Scholar 

  • Cove DJ (1966) The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochem Biophys Acta 113:51–56

    PubMed  CAS  Google Scholar 

  • Das M, Bhat PJ (2005) Disruption of MRG19 results in altered nitrogen metabolic status and defective pseudohyphal development in Saccharomyces cerevisiae. Microbiology 151:91–98

    Article  PubMed  CAS  Google Scholar 

  • Eckert SE, Hoffmann B, Wanke C, Braus GH (1999) Sexual development of Aspergillus nidulans in tryptophan auxotrophic strains. Arch Microbiol 172:157–166

    Article  PubMed  CAS  Google Scholar 

  • Felenbok B, Flipphi M, Nikolaev I (2001) Ethanol catabolism in Aspergillus nidulans: a model system for studying gene regulation. Prog Nucleic Acid Res Mol Biol 69:149–204

    Article  PubMed  CAS  Google Scholar 

  • Fidel S, Doonan JH, Morris NR (1988) Aspergillus nidulans contains a single actin gene which has unique intron locations and encodes a γ-actin. Gene 70:283–293

    Article  PubMed  CAS  Google Scholar 

  • Fillinger S, Felenbok B (1996) A newly identified gene cluster in Aspergillus nidulans comprises five novel genes localized in the alc region that are controlled both by the specific transactivator AlcR and the general carbon-catabolite repressor CreA. Mol Microbiol 20:475–488

    Article  PubMed  CAS  Google Scholar 

  • Flipphi M, Kocialkowska J, Felenbok B (2002) Characteristics of physiological inducers of the ethanol utilization (alc) pathway in Aspergillus nidulans. Biochem J 364:25–31

    PubMed  CAS  Google Scholar 

  • Flipphi M, Kocialkowska J, Felenbok B (2003) Relationships between the ethanol utilization (alc) pathway and unrelated catabolic pathways in Aspergillus nidulans. Eur J Biochem 270:3555–3564

    Article  PubMed  CAS  Google Scholar 

  • Flipphi M, Robellet X, Dequier E, Leschelle X, Felenbok B, Vélot C (2006) Functional analysis of alcS, a gene of the alc cluster in Aspergillus nidulans. Fungal Genet Biol 43:247–260

    Article  PubMed  CAS  Google Scholar 

  • Greenstein S, Shadkchan Y, Jadoun J, Sharon C, Markovich S, Osherov N (2006) Analysis of the Aspergillus nidulans thaumatin-like cetA gene and evidence for transcriptional repression of pyr4 expression in the cetA-disrupted strain. Fungal Genet Biol 43:42–53

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 16:557–580

    Article  Google Scholar 

  • Krappmann S, Jung N, Medic B, Busch S, Prade RA, Braus GH (2006) The Aspergillus nidulans F-box protein GrrA links SCF activity to meiosis. Mol Microbiol 61:76–88

    Article  PubMed  CAS  Google Scholar 

  • Lay J, Henry K, Clifford J, Koltin Y, Bulawa CE, Becker JM (1998) Altered expression of selectable marker URA3 in gene-disrupted Candida albicans strains complicates interpretation of virulence studies. Infect Immun 66:5301–5306

    PubMed  CAS  Google Scholar 

  • Lockington RA, Sealy-Lewis HM, Scazzocchio C, Davies RW (1985) Cloning and characterization of the ethanol utilization regulon in Aspergillus nidulans. Gene 33:137–149

    Article  PubMed  CAS  Google Scholar 

  • Mathieu M, Nikolaev I, Scazzocchio C, Felenbok B (2005) Patterns of nucleosomal organization in the alc regulon of Aspergillus nidulans: roles of the AlcR transcriptional activator and the CreA global repressor. Mol Microbiol 56:535–548

    Article  PubMed  CAS  Google Scholar 

  • Miki B, Abdeen A, Manabe Y, MacDonald P (2009) Selectable marker genes and unintended changes to the plant transcriptome. Plant Biotechnol J 7:211–218

    Article  PubMed  CAS  Google Scholar 

  • Ni M, Yu JH (2007) A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. PloS One 2:e970

    Article  PubMed  CAS  Google Scholar 

  • Oakley CE, Weil CF, Kretz PL, Oakley BR (1987) Cloning of the riboB locus of Aspergillus nidulans. Gene 53:293–298

    Article  PubMed  CAS  Google Scholar 

  • Oestreicher N, Scazzocchio C (1993) Sequence, regulation and mutational analysis of the gene encoding urate oxidase in Aspergillus nidulans. J Biol Chem 268:23382–23389

    PubMed  CAS  Google Scholar 

  • Oestreicher N, Sealy-Lewis H, Scazzocchio C (1993) Characterization, cloning and integrative properties of the gene encoding for the urate oxidase in Aspergillus nidulans. Gene 132:185–192

    Article  PubMed  CAS  Google Scholar 

  • Oestreicher N, Ribard C, Scazzocchio C (2008) The nadA gene of Aspergillus nidulans, encoding adenine deaminase, is subject to a unique regulatory pattern. Fungal Genet Biol 45:760–775

    Article  PubMed  CAS  Google Scholar 

  • Ribard C, Rochet M, Labedan B, Daignan-Fornier B, Alzari P, Scazzocchio C, Oestreicher N (2003) Sub-families of α/β barrel enzymes: a new adenine deaminase family. J Mol Biol 334:1117–1131

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Specht CA, DiRusso CC, Novotny CP, Ullrich RC (1982) A method for extracting high-molecular-weight deoxyribonucleic acid from fungi. Anal Biochem 119:158–163

    Article  PubMed  CAS  Google Scholar 

  • Staab JF, Sundstrom P (2003) URA3 as a selectable marker for disruption and virulence assessment of Candida albicans genes. Trends Microbiol 11:69–73

    Article  PubMed  CAS  Google Scholar 

  • Tilburn J, Scazzocchio C, Taylor GG, Zabicky-Zissman JH, Lockington RA, Davies RW (1983) Transformation by integration in Aspergillus nidulans. Gene 26:205–221

    Article  PubMed  CAS  Google Scholar 

  • Vienken K, Scherer M, Fischer R (2005) The Zn(II)2Cys6 putative Aspergillus nidulans transcription factor repressor of sexual development inhibits sexual development under low-carbon conditions and in submersed culture. Genetics 169:619–630

    Article  PubMed  CAS  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Centre National de la Recherche Scientifique (CNRS: contract ATIP 2JE077). X.R. was a recipient of a doctoral fellowship from the Ministère de l’Enseignement Supérieur et de la Recherche of the French Government and was then supported by the Human Earth Foundation. We thank Andrew Pearson for correcting the English. The co-authors are grateful to Dr. Michel Flipphi and Prof. Claudio Scazzocchio for fruitful discussions and valuable advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Vélot.

Additional information

Communicated by G. Braus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 913 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robellet, X., Oestreicher, N., Guitton, A. et al. Gene silencing of transgenes inserted in the Aspergillus nidulans alcM and/or alcS loci. Curr Genet 56, 341–348 (2010). https://doi.org/10.1007/s00294-010-0303-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-010-0303-5

Keywords

Navigation