Skip to main content
Log in

Allelism of Saccharomyces cerevisiae gene PSO10, involved in error-prone repair of psoralen-induced DNA damage, with SUMO ligase-encoding MMS21

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

In order to extend the understanding of the genetical and biochemical basis of photo-activated psoralen-induced DNA repair in the yeast Saccharomyces cerevisiae we have identified and cloned 10 pso mutants. Here, we describe the phenotypic characterization and molecular cloning of the pso10-1 mutant which is highly sensitive to photoactivated psoralens, UV254 nm radiation and the alkylating agent methylmethane sulphonate. The pso10-1 mutant allele also confers a block in the mutagenic response to photoactivated psoralens and UV254 nm radiation, and homoallelic diploids do not sporulate. Molecular cloning using a yeast genomic library, sequence analysis and genetic complementation experiments proved pso10-1 to be a mutant allele of gene MMS21 that encodes a SUMO ligase involved in the sumoylation of several DNA repair proteins. The ORF of pso10-1 contains a single nucleotide C→T transition at position 758, which leads to a change in amino acid sequence from serine to phenylalanine [S253F]. Pso10-1p defines a leaky mutant phenotype of the essential MMS21 gene, and as member of the Smc5-Smc6 complex, still has some essential functions that allow survival of the mutant. DNA repair via translesion synthesis is severely impaired as the pso10-1 mutant allele confers severely blocked induced forward and reverse mutagenesis and shows epistatic interaction with a rev3Δ mutant allele. By identifying the allelism of PSO10 and MMS21 we demonstrate the need of a fully functional Smc5-Smc6 complex for a WT-like adequate repair of photoactivated psoralen-induced DNA damage in yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrews E, Palecek J, Sergeant J, Taylor E, Lehmann AR, Watts FZ (2005) Nse2, a component of the Smc5-Smc6 complex, is a SUMO ligase required for the response to DNA damage. Mol Cell Biol 25:185–196

    Article  PubMed  CAS  Google Scholar 

  • Bankmann M, Brendel M (1989) Molecular dosimetry of 8-MOP + UVA-induced DNA photoadducts in Saccharomyces cerevisiae: correlation of lesion number with genotoxic potential. J Photochem Photobiol B 4:57–74

    Article  PubMed  CAS  Google Scholar 

  • Barber L, Ward T, Hartley J, McHugh P (2005) DNA interstrand cross-links repair in the Saccharomyces cerevisiae cell cycle: overlapping roles for PSO2 (SNM1) with MutS factors and EXO1 during S phase. Mol Cell Biol 25:2297–2309

    Article  PubMed  CAS  Google Scholar 

  • Bartek J, Lukas J (2007) DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol 19:238–245

    Article  PubMed  CAS  Google Scholar 

  • Beasley M, Xu H, Warren W, McKay M (2002) Conserved disruptions in the predicted coiled-coil domains of eukaryotic SMC complexes: implications for structure and function. Genome Res 12:1201–1209

    Article  PubMed  CAS  Google Scholar 

  • Beck BD, Park SJ, Lee YJ, Roman Y, Hromas RA, Lee SH (2008) Human Pso4 is a metnase (SETMAR)-binding partner that regulates metnase function in DNA repair. J Biol Chem 283:9023–9030

    Article  PubMed  CAS  Google Scholar 

  • Bonatto D, Revers LF, Brendel M, Henriques JAP (2005) The eukaryotic Pso2/Snm1/Artemis proteins and their function as genomic and cellular caretakers. Braz J Med Biol Res 38:44–56

    Article  Google Scholar 

  • Brendel M, Henriques JAP (2001) The pso mutants of Saccharomyces cerevisiae comprise two groups: one deficient in DNA repair and another with altered mutagen metabolism. Mutat Res 489:79–96

    Article  PubMed  CAS  Google Scholar 

  • Brendel M, Grey M, Maris AF, Hietkamp J, Fesus F, Pich CT, Dafre L, Schmidt M, Eckardt-Schupp F, Henriques JAP (1998) Low glutathione pools in the original pso3 mutant of Saccharomyces cerevisiae are responsible for its pleiotropic sensitivity phenotype. Curr Genet 33:4–9

    Article  PubMed  CAS  Google Scholar 

  • Brendel M, Bonatto D, Strauss M, Revers LF, Pungartnik C, Saffi J, Henriques JAP (2003) Role of PSO genes in repair of DNA damage of Saccharomyces cerevisiae. Mutat Res 544:179–193

    Article  PubMed  CAS  Google Scholar 

  • Brooks PJ (2002) DNA repair in neural cells: basic science and clinical implications. Mutat Res 509:93–108

    PubMed  CAS  Google Scholar 

  • Burke D, Dawson D, Stearns T (2000) Methods in yeast genetics a CSH laboratory course manual. CSH Laboratory Press, Plainview

    Google Scholar 

  • Callebaut I, Moshous D, Mornon JP, de Villartay JP (2002) Metallo-beta-lactmase fold within nucleic acids processing enzymes: the beta-CASP family. Nucleic Acids Res 30:3592–3601

    Article  PubMed  CAS  Google Scholar 

  • Cardone JM, Revers LF, Machado RM, Bonatto D, Brendel M, Henriques JAP (2006) Psoralen-sensitive mutant pso9–1 of Saccharomyces cerevisiae contains a mutant allele of the DNA damage checkpoint gene MEC3. DNA Repair 5:163–171

    Article  PubMed  CAS  Google Scholar 

  • Cassier C, Chanet R, Henriques JAP, Moustacchi E (1980) The effects of the three PSO genes on induced mutagenesis: a novel class of mutationally defective yeast. Genetics 96:841–857

    PubMed  CAS  Google Scholar 

  • Chabes A, Georgieva B, Domkin V, Zhao X, Rothstein R, Thelander L (2003) Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase. Cell 112:391–401

    Article  PubMed  CAS  Google Scholar 

  • Cheng SC, Tarn WY, Tsao TY, Abelson J (1993) Prp19: a novel spliceosomal component. Mol Cell Biol 13:1876–1882

    PubMed  CAS  Google Scholar 

  • De Piccoli G, Cortes-Ledesma F, Ira G, Torres-Rosell J, Uhle S, Farmer S, Hwang J, Machin F, Ceschia A, McAleenan A, Cordon-Preciado V, Clemente-Blanco A, Vilella-Mitjana F, Ullal P, Jarmuz A, Leitao B, Bressan D, Dotiwala F, Papusha A, Zhao X, Myung K, Haber JE, Aguillera A, Aragon L (2006) Smc5-Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nat Cell Biol 8:1032–1034

    Article  PubMed  CAS  Google Scholar 

  • Essers J, Vermeulen W, Houtsmuller AB (2006) DNA damage repair: anytime, anywhere? Curr Opin Cell Biol 18:240–246

    Article  PubMed  CAS  Google Scholar 

  • Giaever G, Chu AM, Ni L, Connelly C, Riles L, Véronneau S, Dow S, Lucau-Danila A, Anderson K, André B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Güldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kötter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  PubMed  CAS  Google Scholar 

  • Gietz RD, Woods RA (2002) Transformation of yeast by the lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96

    Article  PubMed  CAS  Google Scholar 

  • Grey M, Düsterhöft A, Henriques JA, Brendel M (1996) Allelism of PSO4 and PRP19 links pre-mRNA processing with recombination and error-prone DNA repair in Saccharomyces cerevisiae. Nucleic Acids Res 24:4009–4014

    Article  PubMed  CAS  Google Scholar 

  • Hazbun TR, Malmstrom L, Anderson S, Graczyk BJ, Fox B, Riffle M, Sundin BA, Aranda JD, McDonald WH, Chiu CH, Snydsman BE, Bradley P, Muller EG, Fields S, Baker D, Yates JR 3rd, Davis TN (2003) Assigning function to yeast proteins by integration of technologies. Mol Cell 12:1353–1365

    Article  PubMed  CAS  Google Scholar 

  • Henriques JAP, Moustacchi E (1980) Isolation and characterization of pso mutants sensitive to photoaddition of psoralen derivatives in Saccharomyces cerevisiae. Genetics 95:273–288

    PubMed  CAS  Google Scholar 

  • Henriques JAP, Andrade HHR, Bankmann M, Brendel M (1989) Reassessing the genotoxic potential of 8-MOP + UVA-induced DNA damage in the yeast Saccharomyces cerevisiae. Curr Genet 16:75–80

    Article  PubMed  CAS  Google Scholar 

  • Hoege C, Pfander B, Moldovan GL, PyrowolakisG Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135–141

    Article  PubMed  CAS  Google Scholar 

  • Houtgraaf JH, Versmissen J, van der Giessen WJ (2006) A concise review of DNA damage checkpoints and repair in mammalian cells. Cardiovasc Revasc Med 7:165–172

    Article  PubMed  Google Scholar 

  • Jeggo PA, Löbrich M (2006) Contribution of DNA repair and cell cycle checkpoint arrest to the maintenance of genomic stability. DNA Repair (Amst) 5:1192–1198

    Article  CAS  Google Scholar 

  • Lam A, Krogh B, Symington L (2008) Unique and overlapping functions of the Exo1, Mre11 and Pso2 nucleases in DNA repair. DNA repair 7:655–662

    Article  PubMed  CAS  Google Scholar 

  • Lehoczky P, McHugh PJ, Chovanec M (2007) DNA interstrand cross-link repair in Saccharomyces cerevisiae. FEMS Microbiol Rev 31:109–133

    Article  PubMed  CAS  Google Scholar 

  • Lewis LK, Kirchner JM, Resnick MA (1998) Requirement for end-joining and checkpoint functions, but not RAD52-mediated recombination, after EcoRI endonuclease cleavage of Saccharomyces cerevisiae DNA. Mol Cell Biol 18:1891–1902

    PubMed  CAS  Google Scholar 

  • Li S, Ding B, LeJeune D, Ruggiero C, Chen X, Smerdon MJ (2007) The roles of Rad16 and Rad26 in repairing repressed and actively transcribed genes in yeast. DNA Repair 6:1596–1606

    Article  PubMed  CAS  Google Scholar 

  • Li X, Hejna J, Moses RE (2005) The yeast Snm1 protein is a DNA 5′-exonuclease. DNA Repair 4:163–170

    Article  PubMed  CAS  Google Scholar 

  • Lu X, Legerski RJ (2007) The Prp19/Pso4 core complex undergoes ubiquitylation and structural alterations in response to DNA damage. Biochem Biophys Res Commun 354:968–974

    Article  PubMed  CAS  Google Scholar 

  • Mahajan KN, Mitchell BS (2003) Role of human Pso4 in mammalian DNA repair and association with terminal deoxynucleotidyl transferase. Proc Natl Acad Sci USA 100:10746–10751

    Article  PubMed  CAS  Google Scholar 

  • Noll DM, Mason TM, Miller PS (2006) Formation and repair of interstrand cross-links in DNA. Chem Rev 106:277–301

    Article  PubMed  CAS  Google Scholar 

  • Onoda F, Takeda M, Seki M, Maeda D, Tajima J, Ui A, Yagi H, Enomoto T (2004) SMC6 is required for MMS-induced interchromosomal and sister chromatid recombinations in Saccharomyces cerevisiae. DNA Repair 3:429–439

    Article  PubMed  CAS  Google Scholar 

  • Paesi-Toresan SO, Pich CT, Grey M, Keszenman-Pereyra D, Brendel M, Henriques JA (1995) Gene PSO5 of Saccharomyces cerevisiae, involved in repair of oxidative DNA damage, is allelic to RAD16. Curr Genet 27:493–495

    Article  PubMed  CAS  Google Scholar 

  • Palecek J, Vidot S, Feng M, Doherty AJ, Lehmann AR (2006) The Smc5-Smc6 DNA repair complex bridging of the Smc5-Smc6 heads by the kleisin, nse4, and non-kleisin subunits. J Biol Chem 281:36952–36959

    Article  PubMed  CAS  Google Scholar 

  • Pavlov YI, Shcherbakova PV, Rogozin IB (2006) Roles of DNA polymerases in replication, repair and recombination in eukaryotes. Int Rev Cytol 255:41–132

    Article  PubMed  CAS  Google Scholar 

  • Potts PR, Yu H (2005) Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Mol Cell Biol 25:7021–7032

    Article  PubMed  CAS  Google Scholar 

  • Prakash L, Prakash S (1977a) Isolation and characterization of MMS-sensitive mutants of Saccharomyces cerevisiae. Genetics 86:33–55

    PubMed  CAS  Google Scholar 

  • Prakash S, Prakash L (1977b) Increased spontaneous mitotic segregation in MMS-sensitive mutants of Saccharomyces cerevisiae. Genetics 87:229–236

    PubMed  CAS  Google Scholar 

  • Pungartnik C, Kern MF, Brendel M, Henriques JAP (1999) Mutant allele pso7–1, that sensitizes Saccharomyces cerevisiae to photoactivated psoralens, is allelic with COX11, encoding a protein indispensable for a functional cytochrome c oxidase. Curr Genet 36:124–129

    Article  PubMed  CAS  Google Scholar 

  • Revers LF, Cardone JM, Feldmann H, Grey M, Brendel M, Henriques JAP (2002) Thermoconditional modulation of the pleiotropic sensitivity phenotype by the Saccharomyces cerevisiae PRP19 mutant allele pso4–1. Nucleic Acids Res 30:4993–5003

    Article  PubMed  CAS  Google Scholar 

  • Sacher M, Pfander B, Hoege C, Jentsch S (2006) Control of Rad52 recombination activity by double-strand break induced SUMO modification. Nat Cell Biol 8:1284–1290

    Article  PubMed  CAS  Google Scholar 

  • Saffi J, Feldmann H, Winnacker EL, Henriques JA (2001) Interaction of the yeast Pso5/Rad16 and Sgs1 proteins: influences on DNA repair and aging. Mutat Res 486:195–206

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch ER, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory Press, Cold Spring Harbour

    Google Scholar 

  • Sarkar S, Davies AA, Ulrich HD, McHugh PJ (2006) DNA interstrand crosslink repair during G1 involves nucleotide excision repair and DNA polymerase zeta. EMBO J 25:1285–1294

    Article  PubMed  CAS  Google Scholar 

  • Schmidt CL, Grey M, Schmidt M, Brendel M, Henriques JAP (1999) Allelism of Saccharomyces cerevisiae genes PSO6, involved in survival after 3-CPs + UVA induced damage, and ERG3, encoding the enzyme sterol C-5 desaturase. Yeast 15:1503–1510

    Article  PubMed  CAS  Google Scholar 

  • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    PubMed  CAS  Google Scholar 

  • Stelter P, Ulrich HD (2003) Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425:188–191

    Article  PubMed  CAS  Google Scholar 

  • Strauss M, Grey M, Henriques JAP, Brendel M (2007) RNR4 mutant alleles pso3–1 and rnr4Δ block induced mutation in Saccharomyces cerevisiae. Curr Genet 51:221–231

    Article  PubMed  CAS  Google Scholar 

  • Teng Y, Liu H, Gill HW, Yu Y, Waters R, Reed SH (2008) Saccharomyces cerevisiae Rad16 mediates ultraviolet-dependent histone H3 acetylation required for efficient global genome nucleotide-excision repair. EMBO Rep 9:97–102

    Article  PubMed  CAS  Google Scholar 

  • Trezl L, Park KS, Kim S, Paik WK (1987) Studies on in vitro S-methylation of naturally occurring thiol compounds with N-methyl-N-nitrosourea and methyl methanesulfonate. Environ Res 43:417–426

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Kaur R, Lu X, Shen X, Li L, Legerski RJ (2005) The Pso4 mRNA splicing and DNA repair complex interacts with WRN for processing of DNA interstrand cross-links. J Biol Chem 280:40559–40567

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Blobel G (2005) A SUMO ligase is part of a nuclear multi-protein complex that affects DNA repair and chromosomal organization. Proc Natl Acad Sci USA 102:4777–4782

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Martin Schmidt for kindly providing us the yeast genomic library used in this work, and Dr. Giancarlo Pasquali for sequencing support. Research was supported by CNPq, CAPES and Genotox-Laboratório de Genotoxicidade-Instituto Royal. M.Brendel is a Visiting Scientist supported by Fundação de Amparo a Pesquisa do Estado da Bahia (FAPESB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João A. P. Henriques.

Additional information

Communicated by P. Sunnerhagen.

N. C. Hoch and R. S. Santos contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoch, N.C., Santos, R.S., Rosa, R.M. et al. Allelism of Saccharomyces cerevisiae gene PSO10, involved in error-prone repair of psoralen-induced DNA damage, with SUMO ligase-encoding MMS21 . Curr Genet 53, 361–371 (2008). https://doi.org/10.1007/s00294-008-0192-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-008-0192-z

Keywords

Navigation