Skip to main content
Log in

Ste50 adaptor protein influences Ras/cAMP-driven stress-response and cell survival in Saccharomyces cerevisiae

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The Ste50 adaptor protein is involved in a variety of cellular pathways that yeast cells use to adapt rapidly to environmental changes. A highly activated Ras–cyclic AMP (cAMP) pathway by deletion of the high-affinity cAMP-dependent phosphodiesterase 2 (PDE2) leads to repression of a stress mediated response and cell survival. Here we show that inactivation of STE50 confers a synthetic genetic interaction with pde2Δ. A hyperosmotic stress growth defect of ste50Δ pde2Δ cells is exacerbated by extracellular cAMP or by galactose as the sole carbon source in the medium. The inactivation of the serine/threonine protein-kinase Akt homologue Sch9 increase stress resistance and extend chronological life span. By pde2Δ-dependent increase of the Ras–cAMP pathway activity, inactivation of STE50 results in an extreme shortening of life span and oxidative stress sensitivity of sch9Δ mutants. Furthermore, sch9Δ can promote transcription of the small heat shock protein HSP26 in a PDE2-dependent manner; however, sch9Δ can promote transcription of the mitochondrial superoxide dismutase SOD2 in a PDE2- and STE50-dependent manner. These data indicate that inactivation of STE50 influences stress tolerance in mutants of the Ras–cAMP pathway, which is a major determinant of intrinsic stress tolerance and cell survival of the Saccharomyces cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amoros M, Estruch F (2001) Hsf1p and Msn2/4p cooperate in the expression of Saccharomyces cerevisiae genes HSP26 and HSP104 in a gene- and stress type-dependent manner. Mol Microbiol 39:1523–1532

    Article  PubMed  CAS  Google Scholar 

  • Belazzi T et al (1991) Negative regulation of transcription of the Saccharomyces cerevisiae catalase T (CTT1) gene by cAMP is mediated by a positive control element. Embo J 10:585–592

    PubMed  CAS  Google Scholar 

  • Bitterman KJ, Medvedik O, Sinclair DA (2003) Longevity regulation in Saccharomyces cerevisiae: linking metabolism, genome stability, and heterochromatin. Microbiol Mol Biol Rev 67:376–399

    Article  PubMed  CAS  Google Scholar 

  • Boy-Marcotte E et al (1999) The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons. Mol Microbiol 33:274–283

    Article  PubMed  CAS  Google Scholar 

  • Cannon JF, Tatchell K (1987) Characterization of Saccharomyces cerevisiae genes encoding subunits of cyclic AMP-dependent protein kinase. Mol Cell Biol 7:2653–2663

    PubMed  CAS  Google Scholar 

  • Charizanis C, Juhnke H, Krems B, Entian KD (1999) The mitochondrial cytochrome c peroxidase Ccp1 of Saccharomyces cerevisiae is involved in conveying an oxidative stress signal to the transcription factor Pos9 (Skn7). Mol Gen Genet 262:437–447

    Article  PubMed  CAS  Google Scholar 

  • Colombo S, Ronchetti D, Thevelein JM, Winderickx J, Martegani E (2004) Activation state of the Ras2 protein and glucose-induced signaling in Saccharomyces cerevisiae. J Biol Chem 279:46715–46722

    Article  PubMed  CAS  Google Scholar 

  • Cullen PJ, Schultz J, Horecka J, Stevenson BJ, Jigami Y, Sprague GF (2000) Defects in protein glycosylation cause SHO1-dependent activation of a STE12 signaling pathway in yeast. Genetics 155:1005–1018

    PubMed  CAS  Google Scholar 

  • DeFeo-Jones D et al (1985) Mammalian and yeast ras gene products: biological function in their heterologous systems. Science 228:179–184

    Article  PubMed  CAS  Google Scholar 

  • Deutschbauer AM, Williams RM, Chu AM, Davis RW (2002) Parallel phenotypic analysis of sporulation and postgermination growth in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 99:15530–15535

    Article  PubMed  CAS  Google Scholar 

  • Dihazi H, Kessler R, Eschrich K (2004) High osmolarity glycerol (HOG) pathway-induced phosphorylation and activation of 6-phosphofructo-2-kinase are essential for glycerol accumulation and yeast cell proliferation under hyperosmotic stress. J Biol Chem 279:23961–23968

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio P et al (2004a) Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J Cell Biol 166:1055–1067

    Article  CAS  Google Scholar 

  • Fabrizio P et al (2005) Sir2 blocks extreme life-span extension. Cell 123:655–667

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio P et al (2003a) SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics 163:35–46

    CAS  Google Scholar 

  • Fabrizio P, Longo VD (2003b) The chronological life span of Saccharomyces cerevisiae. Aging Cell 2:73–81

    Article  CAS  Google Scholar 

  • Fabrizio P, Pletcher SD, Minois N, Vaupel JW, Longo VD (2004b) Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae. FEBS Lett 557:136–142

    Article  CAS  Google Scholar 

  • Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD (2001) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292:288–290

    Article  PubMed  CAS  Google Scholar 

  • Fedor-Chaiken M, Deschenes RJ, Broach JR (1990) SRV2, a gene required for RAS activation of adenylate cyclase in yeast. Cell 61:329–340

    Article  PubMed  CAS  Google Scholar 

  • Ferguson SB, Anderson ES, Harshaw RB, Thate T, Craig NL, Nelson HC (2005) Protein kinase A regulates constitutive expression of small heat-shock genes in an Msn2/4p-independent and Hsf1p-dependent manner in Saccharomyces cerevisiae. Genetics 169:1203–1214

    Article  PubMed  CAS  Google Scholar 

  • Field J et al (1988) Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method. Mol Cell Biol 8:2159–2165

    PubMed  CAS  Google Scholar 

  • Field J et al (1990) Cloning and characterization of CAP, the S. cerevisiae gene encoding the 70 kd adenylyl cyclase-associated protein. Cell 61:319–327

    Article  PubMed  CAS  Google Scholar 

  • Flattery-O’Brien JA, Grant CM, Dawes IW (1997) Stationary-phase regulation of the Saccharomyces cerevisiae SOD2 gene is dependent on additive effects of HAP2/3/4/5- and STRE-binding elements. Mol Microbiol 23:303–312

    Article  PubMed  CAS  Google Scholar 

  • Garreau H, Hasan RN, Renault G, Estruch F, Boy-Marcotte E, Jacquet M (2000) Hyperphosphorylation of Msn2p and Msn4p in response to heat shock and the diauxic shift is inhibited by cAMP in Saccharomyces cerevisiae. Microbiology 146(Pt 9):2113–2120

    PubMed  CAS  Google Scholar 

  • Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30:e23

    Article  PubMed  CAS  Google Scholar 

  • Hasan R, Leroy C, Isnard AD, Labarre J, Boy-Marcotte E, Toledano MB (2002) The control of the yeast H2O2 response by the Msn2/4 transcription factors. Mol Microbiol 45:233–241

    Article  PubMed  CAS  Google Scholar 

  • Hirata D, Harada S, Namba H, Miyakawa T (1995) Adaptation to high-salt stress in Saccharomyces cerevisiae is regulated by Ca2+/calmodulin-dependent phosphoprotein phosphatase (calcineurin) and cAMP-dependent protein kinase. Mol Gen Genet 249:257–264

    Article  PubMed  CAS  Google Scholar 

  • Howard SC, Budovskaya YV, Chang YW, Herman PK (2002) The C-terminal domain of the largest subunit of RNA polymerase II is required for stationary phase entry and functionally interacts with the Ras/PKA signaling pathway. J Biol Chem 277:19488–19497

    Article  PubMed  CAS  Google Scholar 

  • Howard SC, Deminoff SJ, Herman PK (2006) Increased phosphoglucomutase activity suppresses the galactose growth defect associated with elevated levels of Ras signaling in S. cerevisiae. Curr Genet 49:1–6

    Article  PubMed  CAS  Google Scholar 

  • Kaeberlein M, Andalis AA, Fink GR, Guarente L (2002) High osmolarity extends life span in Saccharomyces cerevisiae by a mechanism related to calorie restriction. Mol Cell Biol 22:8056–8066

    Article  PubMed  CAS  Google Scholar 

  • Kataoka T, Broek D, Wigler M (1985) DNA sequence and characterization of the S. cerevisiae gene encoding adenylate cyclase. Cell 43:493–505

    Article  PubMed  CAS  Google Scholar 

  • Lee BN, Elion EA (1999) The MAPKKK Ste11 regulates vegetative growth through a kinase cascade of shared signaling components. Proc Natl Acad Sci USA 96:12679–12684

    Article  PubMed  CAS  Google Scholar 

  • Ma P, Wera S, Van Dijck P, Thevelein JM (1999) The PDE1-encoded low-affinity phosphodiesterase in the yeast Saccharomyces cerevisiae has a specific function in controlling agonist-induced cAMP signaling. Mol Biol Cell 10:91–104

    PubMed  CAS  Google Scholar 

  • Martinez-Pastor MT, Marchler G, Schuller C, Marchler-Bauer A, Ruis H, Estruch F (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). Embo J 15:2227–2235

    PubMed  CAS  Google Scholar 

  • Mitsuzawa H (1993) Responsiveness to exogenous cAMP of a Saccharomyces cerevisiae strain conferred by naturally occurring alleles of PDE1 and PDE2. Genetics 135:321–326

    PubMed  CAS  Google Scholar 

  • Nakafuku M et al (1988) Isolation of a second yeast Saccharomyces cerevisiae gene (GPA2) coding for guanine nucleotide-binding regulatory protein: studies on its structure and possible functions. Proc Natl Acad Sci USA 85:1374–1378

    Article  PubMed  CAS  Google Scholar 

  • Nikawa J, Sass P, Wigler M (1987) Cloning and characterization of the low-affinity cyclic AMP phosphodiesterase gene of Saccharomyces cerevisiae. Mol Cell Biol 7:3629–3636

    PubMed  CAS  Google Scholar 

  • Park G, Xue C, Zhao X, Kim Y, Orbach M, Xu JR (2006) Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea. Plant Cell 18:2822–2835

    Article  PubMed  CAS  Google Scholar 

  • Park JI, Collinson EJ, Grant CM, Dawes IW (2005a) Rom2p, the Rho1 GTP/GDP exchange factor of Saccharomyces cerevisiae, can mediate stress responses via the Ras-cAMP pathway. J Biol Chem 280:2529–2535

    Article  CAS  Google Scholar 

  • Park JI, Grant CM, Attfield PV, Dawes IW (1997) The freeze-thaw stress response of the yeast Saccharomyces cerevisiae is growth phase specific and is controlled by nutritional state via the RAS-cyclic AMP signal transduction pathway. Appl Environ Microbiol 63:3818–3824

    PubMed  CAS  Google Scholar 

  • Park JI, Grant CM, Dawes IW (2005b) The high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae is the major determinant of cAMP levels in stationary phase: involvement of different branches of the Ras-cyclic AMP pathway in stress responses. Biochem Biophys Res Commun 327:311–319

    Article  CAS  Google Scholar 

  • Posas F, Witten EA, Saito H (1998) Requirement of STE50 for osmostress-induced activation of the STE11 mitogen-activated protein kinase kinase kinase in the high-osmolarity glycerol response pathway. Mol Cell Biol 18:5788–5796

    PubMed  CAS  Google Scholar 

  • Rad MR, Jansen G, Buhring F, Hollenberg CP (1998) Ste50p is involved in regulating filamentous growth in the yeast Saccharomyces cerevisiae and associates with Ste11p. Mol Gen Genet 259:29–38

    Article  CAS  Google Scholar 

  • Rad MR, Xu G, Hollenberg CP (1992) Ste50, a novel gene required for activation of conjugation at an early step in mating in Saccharomyces-cerevisiae. Mol Gen Genet 236:145–154

    PubMed  CAS  Google Scholar 

  • Ramezani-Rad M (2003) The role of adaptor protein Ste50-dependent regulation of the MAPKKK Ste11 in multiple signalling pathways of yeast. Curr Genet 43:161–170

    PubMed  CAS  Google Scholar 

  • Roosen J et al (2005) PKA and Sch9 control a molecular switch important for the proper adaptation to nutrient availability. Mol Microbiol 55:862–880

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning, A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sass P, Field J, Nikawa J, Toda T, Wigler M (1986) Cloning and characterization of the high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 83:9303–9307

    Article  PubMed  CAS  Google Scholar 

  • Smith A, Ward MP, Garrett S (1998) Yeast PKA represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation. Embo J 17:3556–3564

    Article  PubMed  CAS  Google Scholar 

  • Stanhill A, Schick N, Engelberg D (1999) The yeast ras/cyclic AMP pathway induces invasive growth by suppressing the cellular stress response. Mol Cell Biol 19:7529–7538

    PubMed  CAS  Google Scholar 

  • Thevelein JM, de Winde JH (1999) Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33:904–918

    Article  PubMed  CAS  Google Scholar 

  • Toda T, Cameron S, Sass P, Wigler M (1988) SCH9, a gene of Saccharomyces cerevisiae that encodes a protein distinct from, but functionally and structurally related to, cAMP-dependent protein kinase catalytic subunits. Genes Dev 2:517–527

    PubMed  CAS  Google Scholar 

  • Toda T et al (1987a) Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol Cell Biol 7:1371–1377

    CAS  Google Scholar 

  • Toda T, Cameron S, Sass P, Zoller M, Wigler M (1987b) Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell 50:277–287

    Article  CAS  Google Scholar 

  • Toda T et al (1985) In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40:27–36

    Article  PubMed  CAS  Google Scholar 

  • Treger JM, Schmitt AP, Simon JR, McEntee K (1998) Transcriptional factor mutations reveal regulatory complexities of heat shock and newly identified stress genes in Saccharomyces cerevisiae. J Biol Chem 273:26875–26879

    Article  PubMed  CAS  Google Scholar 

  • Truckses DM, Bloomekatz JE, Thorner J (2006) The RA domain of Ste50 adaptor protein is required for delivery of Ste11 to the plasma membrane in the filamentous growth signaling pathway of the yeast Saccharomyces cerevisiae. Mol Cell Biol 26:912–928

    Article  PubMed  CAS  Google Scholar 

  • Van Dijck P et al (2000) Characterization of a new set of mutants deficient in fermentation-induced loss of stress resistance for use in frozen dough applications. Int J Food Microbiol 55:187–192

    Article  PubMed  Google Scholar 

  • Wach A, Brachat A, Alberti-Segui C, Rebischung C, Philippsen P (1997) Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae. Yeast 13:1065–1075

    Article  PubMed  CAS  Google Scholar 

  • Wilson RB, Renault G, Jacquet M, Tatchell K (1993) The pde2 gene of Saccharomyces cerevisiae is allelic to rca1 and encodes a phosphodiesterase, which protects the cell from extracellular cAMP. FEBS Lett 325:191–195

    Article  PubMed  CAS  Google Scholar 

  • Xu G, Jansen G, Thomas DY, Hollenberg CP, Ramezani Rad M (1996) Ste50p sustains mating pheromone-induced signal transduction in the yeast Saccharomyces cerevisiae. Mol Microbiol 20:773–783

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank all members of our group for their helpful discussions. This work was partly supported by a grant from the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massoud Ramezani-Rad.

Additional information

Communicated by S. Hohmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poplinski, A., Hopp, C. & Ramezani-Rad, M. Ste50 adaptor protein influences Ras/cAMP-driven stress-response and cell survival in Saccharomyces cerevisiae . Curr Genet 51, 257–268 (2007). https://doi.org/10.1007/s00294-007-0124-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-007-0124-3

Keywords

Navigation