Skip to main content
Log in

Treasure hunt in an amoeba: non-coding RNAs in Dictyostelium discoideum

  • Review Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The traditional view of RNA being merely an intermediate in the transfer of genetic information, as mRNA, spliceosomal RNA, tRNA, and rRNA, has become outdated. The recent discovery of numerous regulatory RNAs with a plethora of functions in biological processes has truly revolutionized our understanding of gene regulation. Tiny RNAs such as microRNAs and small interfering RNAs play vital roles at different levels of gene control. Small nucleolar RNAs are much more abundant than previously recognized, and new functions beyond processing and modification of rRNA have recently emerged. Longer non-coding RNAs (ncRNAs) can also have important regulatory roles in the cell, e.g., antisense RNAs that control their target mRNAs. The majority of these important findings arose from analyses in various model organisms. In this review, we focus on ncRNAs in the social amoeba Dictyostelium discoideum. This important genetically tractable model organism has recently received renewed attention in terms of discovery, regulation and functional studies of ncRNAs. Old and recent findings are discussed and put in context of what we today know about ncRNAs in other organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Accardo MC et al (2004) A computational search for box C/D snoRNA genes in the D. melanogaster genome. Bioinformatics 20:3293–3301

    PubMed  CAS  Google Scholar 

  • Adams MD et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    PubMed  Google Scholar 

  • Allmang C, Petfalski E, Podtelejnikov A, Mann M, Tollervey D, Mitchell P (1999) The yeast exosome and human PM-Scl are related complexes of 3′ → 5′ exonucleases. Genes Dev 13:2148–2158

    PubMed  CAS  Google Scholar 

  • Ambros V, Lee RC (2004) Identification of microRNAs and other tiny noncoding RNAs by cDNA clothing. In: Gott JM (ed) RNA interferance, editing, and modification. Human Press, Totowa, pp 131–158

    Google Scholar 

  • Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D (2003) MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol 13:807–818

    PubMed  CAS  Google Scholar 

  • Andersen ES et al (2006) The tmRDB and SRPDB resources. Nucleic Acids Res 34:D163–D168

    PubMed  CAS  Google Scholar 

  • Anderson JT (2005) RNA turnover: unexpected consequences of being tailed. Curr Biol 15:R635–638

    PubMed  CAS  Google Scholar 

  • Aravin A, Tuschl T (2005) Identification and characterization of small RNAs involved in RNA silencing. FEBS Lett 579:5830–5840

    PubMed  CAS  Google Scholar 

  • Aravin A et al (2006) A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442:203–207

    PubMed  CAS  Google Scholar 

  • Asa SL, Ramyar L, Murphy PR, Li AW, Ezzat S (2001) The endogenous fibroblast growth factor-2 antisense gene product regulates pituitary cell growth and hormone production. Mol Endocrinol 15:589–599

    PubMed  CAS  Google Scholar 

  • Aspegren A, Hinas A, Larsson P, Larsson A, Söderbom F (2004) Novel non-coding RNAs in Dictyostelium discoideum and their expression during development. Nucleic Acids Res 32:4646–4656

    PubMed  CAS  Google Scholar 

  • Bachellerie JP, Michot B, Nicoloso M, Balakin A, Ni J, Fournier MJ (1995) Antisense snoRNAs: a family of nucleolar RNAs with long complementarities to rRNA. Trends Biochem Sci 20:261–264

    PubMed  CAS  Google Scholar 

  • Bachellerie JP, Cavaillé J, Hüttenhofer A (2002) The expanding snoRNA world. Biochimie 84:775–790

    PubMed  CAS  Google Scholar 

  • Bagorda A, Mihaylov VA, Parent CA (2006) Chemotaxis: moving forward and holding on to the past. Thromb Haemost 95:12–21

    PubMed  CAS  Google Scholar 

  • Bapteste E et al (2002) The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba. Proc Natl Acad Sci USA 99:1414–1419

    PubMed  CAS  Google Scholar 

  • Barth S, Hury A, Liang XH, Michaeli S (2005) Elucidating the role of H/ACA-like RNAs in trans-splicing and rRNA processing via RNA interference silencing of the Trypanosoma brucei CBF5 pseudouridine synthase. J Biol Chem 280:34558–34568

    PubMed  CAS  Google Scholar 

  • Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA 102:11928–11933

    PubMed  CAS  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    PubMed  CAS  Google Scholar 

  • Birchler JA, Matzke MA (2005) RNAi-mediated pathways in the nucleus. Nat Rev Genet 6:24–35

    PubMed  Google Scholar 

  • Blum B, Bakalara N, Simpson L (1990) A model for RNA editing in kinetoplastid mitochondria: “guide” RNA molecules transcribed from maxicircle DNA provide the edited information. Cell 60:189–198

    PubMed  CAS  Google Scholar 

  • Boeckeler K, Tischendorf G, Mutzel R, Weissenmayer B (2006) Aberrant stalk development and breakdown of tip dominance in Dictyostelium cell lines with RNAi-silenced expression of calcineurin B. BMC Dev Biol 6:12

    PubMed  Google Scholar 

  • Brown JW, Echeverria M, Qu LH (2003) Plant snoRNAs: functional evolution and new modes of gene expression. Trends Plant Sci 8:42–49

    PubMed  CAS  Google Scholar 

  • Cappello J, Handelsman K, Lodish HF (1985) Sequence of Dictyostelium DIRS-1: an apparent retrotransposon with inverted terminal repeats and an internal circle junction sequence. Cell 43:105–115

    PubMed  CAS  Google Scholar 

  • Carmell MA, Xuan Z, Zhang MQ, Hannon GJ (2002) The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 16:2733

    PubMed  CAS  Google Scholar 

  • Carthew RW (2006) Gene regulation by microRNAs. Curr Opin Genet Dev 16:203–208

    PubMed  CAS  Google Scholar 

  • Cavaillé J, Nicoloso M, Bachellerie JP (1996) Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature 383:732–735

    PubMed  Google Scholar 

  • Cavaillé J et al (2000) Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc Natl Acad Sci USA 97:14311–14316

    PubMed  Google Scholar 

  • Cerutti H, Casas-Mollano JA (2006) On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet 50:81–99

    PubMed  CAS  Google Scholar 

  • Chisholm RL et al (2006) dictyBase, the model organism database for Dictyostelium discoideum. Nucleic Acids Res 34:D423–427

    PubMed  CAS  Google Scholar 

  • Chu S, Archer RH, Zengel JM, Lindahl L (1994) The RNA of RNase MRP is required for normal processing of ribosomal RNA. Proc Natl Acad Sci USA 91:659–663

    PubMed  CAS  Google Scholar 

  • Clouet d’Orval B, Bortolin ML, Gaspin C, Bachellerie JP (2001) Box C/D RNA guides for the ribose methylation of archaeal tRNAs. The tRNATrp intron guides the formation of two ribose-methylated nucleosides in the mature tRNATrp. Nucleic Acids Res 29:4518–4529

    PubMed  CAS  Google Scholar 

  • Colgan DF, Manley JL (1997) Mechanism and regulation of mRNA polyadenylation. Genes Dev 11:2755–2766

    PubMed  CAS  Google Scholar 

  • Crowley TE, Nellen W, Gomer RH, Firtel RA (1985) Phenocopy of discoidin I-minus mutants by antisense transformation in Dictyostelium. Cell 43:633–641

    PubMed  CAS  Google Scholar 

  • Culver GM (2002) Sno-capped: 5′ ends of preribosomal RNAs are decorated with a U3 SnoRNP. Chem Biol 9:777

    PubMed  CAS  Google Scholar 

  • Deng W et al (2006) Organization of the Caenorhabditis elegans small non-coding transcriptome: genomic features, biogenesis, and expression. Genome Res 16:20–29

    PubMed  CAS  Google Scholar 

  • Deutscher MP (2006) Degradation of RNA in bacteria: comparison of mRNA and stable RNA. Nucleic Acids Res 34:659–666

    PubMed  CAS  Google Scholar 

  • Du T, Zamore PD (2005) Microprimer: the biogenesis and function of microRNA. Development 132:4645–4652

    PubMed  CAS  Google Scholar 

  • Duchaine TF et al (2006) Functional proteomics reveals the biochemical niche of C. elegans DCR-1 in multiple small-RNA-mediated pathways. Cell 124:343–354

    PubMed  CAS  Google Scholar 

  • Eddy SR (2002) Computational genomics of noncoding RNA genes. Cell 109:137–140

    PubMed  CAS  Google Scholar 

  • Eichinger L, Rivero F (2006) Dictyostelium discoideum protocols. Humana Press, Totowa, NJ

    Google Scholar 

  • Eichinger L et al (2005) The genome of the social amoeba Dictyostelium discoideum. Nature 435:43–57

    PubMed  CAS  Google Scholar 

  • Erdmann VA, Szymanski M, Hochberg A, Groot N, Barciszewski J (2000) Non-coding, mRNA-like RNAs database Y2K. Nucleic Acids Res 28:197–200

    PubMed  CAS  Google Scholar 

  • Escalante R, Moreno N, Sastre L (2003) Dictyostelium discoideum developmentally regulated genes whose expression is dependent on MADS box transcription factor SrfA. Eukaryot Cell 2:1327–1335

    PubMed  CAS  Google Scholar 

  • Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    PubMed  CAS  Google Scholar 

  • Farbrother P et al (2006) Dictyostelium transcriptional host cell response upon infection with Legionella. Cellular Microbiol 8:438–456

    CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806

    PubMed  CAS  Google Scholar 

  • Frith MC, Pheasant M, Mattick JS (2005) Genomics: the amazing complexity of the human transcriptome. Eur J Hum Genet 13:894

    PubMed  CAS  Google Scholar 

  • Ganot P, Bortolin ML, Kiss T (1997) Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89:799–809

    PubMed  CAS  Google Scholar 

  • Ganot P, Jády BE, Bortolin ML, Darzacq X, Kiss T (1999) Nucleolar factors direct the 2′-O-ribose methylation and pseudouridylation of U6 spliceosomal RNA. Mol Cell Biol 19:6906–6917

    PubMed  CAS  Google Scholar 

  • Gasciolli V, Mallory AC, Bartel DP, Vaucheret H (2005) Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr Biol 15:1494–1500

    PubMed  CAS  Google Scholar 

  • Girard A, Sachidanandam R, Hannon GJ, Carmell MA (2006) A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442:199–202

    PubMed  Google Scholar 

  • Goffeau A et al (1996) Life with 6000 genes. Science 274:546, 563–547

    Google Scholar 

  • Gomer RH (1999) Gene identification by shotgun antisense. Methods 18:311

    PubMed  CAS  Google Scholar 

  • Goodrich JA, Kugel JF (2006) Non-coding-RNA regulators of RNA polymerase II transcription. Nat Rev Mol Cell Biol 7:612–616

    PubMed  CAS  Google Scholar 

  • Gottesman S (2005) Micros for microbes: non-coding regulatory RNAs in bacteria. Trends Genet 21:399–404

    PubMed  CAS  Google Scholar 

  • Grant CE, Bain G, Tsang A (1990) The molecular basis for alternative splicing of the CABP1 transcripts in Dictyostelium discoideum. Nucleic Acids Res 18:5457–5463

    PubMed  CAS  Google Scholar 

  • Green PJ, Pines O, Inouye M (1986) The role of antisense RNA in gene regulation. Ann Rev Biochem 55:569–597

    PubMed  CAS  Google Scholar 

  • Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A (2005) Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res 33:D121–D124 (database issue)

    Google Scholar 

  • Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857

    PubMed  CAS  Google Scholar 

  • Halic M, Beckmann R (2005) The signal recognition particle and its interactions during protein targeting. Curr Opin Struct Biol 15:116

    PubMed  CAS  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    PubMed  CAS  Google Scholar 

  • Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296

    PubMed  CAS  Google Scholar 

  • Hartmann E, Hartmann RK (2003) The enigma of ribonuclease P evolution. Trends Genet 19:561

    PubMed  CAS  Google Scholar 

  • Hastings KEM (2005) SL trans-splicing: easy come or easy go? Trends Genet 21:240–247

    PubMed  CAS  Google Scholar 

  • Heard E (2005) Delving into the diversity of facultative heterochromatin: the epigenetics of the inactive X chromosome. Curr Opin Genet Dev 15:482

    PubMed  CAS  Google Scholar 

  • Heard DJ, Filipowicz W, Marques JP, Palme K, Gualberto JM (1995) An upstream U-snRNA gene-like promoter is required for transcription of the Arabidopsis thaliana 7SL RNA gene. Nucleic Acids Res 23:1970–1976

    PubMed  CAS  Google Scholar 

  • Hernandez N (2001) Small nuclear RNA genes: a model system to study fundamental mechanisms of transcription. J Biol Chem 276:26733–26736

    PubMed  CAS  Google Scholar 

  • Herr AJ, Jensen MB, Dalmay T, Baulcombe DC (2005) RNA polymerase IV directs silencing of endogenous DNA. Science 308:118–120

    PubMed  CAS  Google Scholar 

  • Hildebrandt M, Nellen W (1992) Differential antisense transcription from the Dictyostelium EB4 gene locus: implications on antisense-mediated regulation of mRNA stability. Cell 69:197–204

    PubMed  CAS  Google Scholar 

  • Hinas A, Larsson P, Avesson L, Kirsebom LA, Virtanen A, Söderbom F (2006) Identification of the major spliceosomal RNAs in Dictyostelium discoideum reveals developmentally regulated U2 variants and polyadenylated snRNAs. Eukaryot Cell 5:924–934

    PubMed  CAS  Google Scholar 

  • Huang ZP, Zhou H, He HL, Chen CL, Liang D, Qu LH (2005) Genome-wide analyses of two families of snoRNA genes from Drosophila melanogaster, demonstrating the extensive utilization of introns for coding of snoRNAs. RNA 11:1303–1316

    PubMed  CAS  Google Scholar 

  • Huh WK et al (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    PubMed  CAS  Google Scholar 

  • Human Genome Sequencing C (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931

    Google Scholar 

  • Hüttenhofer A, Schattner P (2006) The principles of guiding by RNA: chimeric RNA-protein enzymes. Nat Rev Genet 7:475–482

    PubMed  Google Scholar 

  • Hüttenhofer A, Vogel J (2006) Experimental approaches to identify non-coding RNAs. Nucleic Acids Res 34:635

    PubMed  Google Scholar 

  • Hüttenhofer A et al (2001) RNomics: an experimental approach that identifies 201 candidates for novel, small, non-messenger RNAs in mouse. EMBO J 20:2943–2953

    PubMed  Google Scholar 

  • Hüttenhofer A, Schattner P, Polacek N (2005) Non-coding RNAs: hope or hype? Trends Genet 21:289–297

    PubMed  Google Scholar 

  • Jády BE, Kiss T (2001) A small nucleolar guide RNA functions both in 2′-O-ribose methylation and pseudouridylation of the U5 spliceosomal RNA. EMBO J 20:541–551

    PubMed  Google Scholar 

  • Jaronczyk K, Carmichael JB, Hobman TC (2005) Exploring the functions of RNA interference pathway proteins: some functions are more RISCy than others? Biochem J 387:561–571

    PubMed  CAS  Google Scholar 

  • Kaneda S, Gotoh O, Seno T, Takeishi K (1983) Nucleotide sequence of Dictyostelium small nuclear RNA Dd8 not homologous to any other sequenced small nuclear RNA. J Biol Chem 258:10606–10613

    PubMed  CAS  Google Scholar 

  • Katoh M, Curk T, Xu Q, Zupan B, Kuspa A, Shaulsky G (2006) Developmentally regulated DNA methylation in Dictyostelium discoideum. Eukaryot Cell 5:18–25

    PubMed  CAS  Google Scholar 

  • Kennedy S, Wang D, Ruvkun G (2004) A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature 427:645–649

    PubMed  CAS  Google Scholar 

  • Kessin RH (2001) Dictyostelium—evolution, cell biology, and the development of multicellularity. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Kimelman D, Kirschner MW (1989) An antisense mRNA directs the covalent modification of the transcript encoding fibroblast growth factor in Xenopus oocytes. Cell 59:687

    PubMed  CAS  Google Scholar 

  • Kishore S, Stamm S (2006) The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science 311:230–232

    PubMed  CAS  Google Scholar 

  • Kiss T (2002) Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 109:145–148

    PubMed  CAS  Google Scholar 

  • Kiss T, Marshallsay C, Filipowicz W (1992) 7–2/MRP RNAs in plant and mammalian cells: association with higher order structures in the nucleolus. EMBO J 11:3737–3746

    PubMed  CAS  Google Scholar 

  • Kiss-László Z, Henry Y, Bachellerie JP, Caizergues-Ferrer M, Kiss T (1996) Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85:1077–1088

    PubMed  Google Scholar 

  • Klein RJ, Misulovin Z, Eddy SR (2002) Noncoding RNA genes identified in AT-rich hyperthermophiles. Proc Natl Acad Sci U S A 99:7542–7547

    PubMed  CAS  Google Scholar 

  • Kuhlmann M et al (2005) Silencing of retrotransposons in Dictyostelium by DNA methylation and RNAi. Nucleic Acids Res 33:6405–6417

    PubMed  CAS  Google Scholar 

  • Kumimoto H, Yoshida H, Okamoto K (1995) RNA polymerase II transcribes Dictyostelium untranslatable gene, dutA, specifically in the developmental phase. Biochem Biophys Res Commun 216:273–278

    PubMed  CAS  Google Scholar 

  • Kuspa A, Dingermann T, Nellen W (1995) Analysis of gene function in Dictyostelium. Experientia 51:1116–1123

    PubMed  CAS  Google Scholar 

  • Lau NC et al (2006) Characterization of the piRNA complex from rat testes. Science 313:363–367

    PubMed  CAS  Google Scholar 

  • Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864

    PubMed  CAS  Google Scholar 

  • Lee SR, Collins K (2006) Two classes of endogenous small RNAs in Tetrahymena thermophila. Genes Dev 20:28–33

    PubMed  CAS  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    PubMed  CAS  Google Scholar 

  • Lee CH et al (2005) Dictyostelium CBP3 associates with actin cytoskeleton and is related to slug migration. Biochim Biophys Acta 1743:281–290

    PubMed  CAS  Google Scholar 

  • Lee RC, Hammell CM, Ambros V (2006) Interacting endogenous and exogenous RNAi pathways in Caenorhabditis elegans. RNA 12:589–597

    PubMed  CAS  Google Scholar 

  • Lerner MR, Steitz JA (1979) Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythematosus. Proc Natl Acad Sci USA 76:5495–5499

    PubMed  CAS  Google Scholar 

  • Lerner MR, Steitz JA (1981) Snurps and scyrps. Cell 25:298–300

    PubMed  CAS  Google Scholar 

  • Lerner MR, Boyle JA, Mount SM, Wolin SL, Steitz JA (1980) Are snRNPs involved in splicing? Nature 283:220–224

    PubMed  CAS  Google Scholar 

  • Li HW, Ding SW (2005) Antiviral silencing in animals. FEBS Lett 579:5965–5973

    PubMed  CAS  Google Scholar 

  • Liang XH, Xu YX, Michaeli S (2002) The spliced leader-associated RNA is a trypanosome-specific sn(o) RNA that has the potential to guide pseudouridine formation on the SL RNA. RNA 8:237–246

    PubMed  CAS  Google Scholar 

  • Liu J et al (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441

    PubMed  CAS  Google Scholar 

  • Louis JM, Saxe CL 3rd, Kimmel AR (1993) Two transmembrane signaling mechanisms control expression of the cAMP receptor gene CAR1 during Dictyostelium development. Proc Natl Acad Sci USA 90:5969–5973

    PubMed  CAS  Google Scholar 

  • Lowe TM, Eddy SR (1999) A computational screen for methylation guide snoRNAs in yeast. Science 283:1168–1171

    PubMed  CAS  Google Scholar 

  • Lung B et al (2006) Identification of small non-coding RNAs from mitochondria and chloroplasts. Nucleic Acids Res 34:3842–3852

    PubMed  CAS  Google Scholar 

  • Lygerou Z, Mitchell P, Petfalski E, Seraphin B, Tollervey D (1994) The POP1 gene encodes a protein component common to the RNase MRP and RNase P ribonucleoproteins. Genes Dev 8:1423–1433

    PubMed  CAS  Google Scholar 

  • Lygerou Z, Allmang C, Tollervey D, Seraphin B (1996) Accurate processing of a eukaryotic precursor ribosomal RNA by ribonuclease MRP in vitro. Science 272:268–270

    PubMed  CAS  Google Scholar 

  • Maeda M et al (2003) Changing patterns of gene expression in Dictyostelium prestalk cell subtypes recognized by in situ hybridization with genes from microarray analyses. Eukaryot Cell 2:627–637

    PubMed  CAS  Google Scholar 

  • Mallory AC, Vaucheret H (2006) Functions of microRNAs and related small RNAs in plants. Nat Genet 38(Suppl):S31–36

    PubMed  CAS  Google Scholar 

  • Marker C et al (2002) Experimental RNomics. Identification of 140 Candidates for Small Non- Messenger RNAs in the Plant Arabidopsis thaliana. Curr Biol 12:2002–2013

    PubMed  CAS  Google Scholar 

  • Marquez SM et al (2005) Structural implications of novel diversity in eucaryal RNase P RNA. RNA 11:739–751

    PubMed  CAS  Google Scholar 

  • Martens H, Novotny J, Oberstrass J, Steck TL, Postlethwait P, Nellen W (2002) RNAi in Dictyostelium: the role of RNA-directed RNA polymerases and double-stranded RNase. Mol Biol Cell 13:445–453

    PubMed  CAS  Google Scholar 

  • Maruo T et al (2004) Control of cell type proportioning in Dictyostelium discoideum by differentiation-inducing factor as determined by in situ hybridization. Eukaryot Cell 3:1241–1248

    PubMed  CAS  Google Scholar 

  • Mattick JS, Makunin IV (2005) Small regulatory RNAs in mammals. Hum Mol Genet 14(1):R121–R132

    PubMed  CAS  Google Scholar 

  • Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15(1):R17–R29

    PubMed  CAS  Google Scholar 

  • Matzke MA, Birchler JA (2005) RNAi-mediated pathways in the nucleus. Nat Rev Genet 6:24–35

    PubMed  CAS  Google Scholar 

  • Mehler MF, Mattick JS (2006) Non-coding RNAs in the nervous system. J Physiol 575:333–341

    PubMed  CAS  Google Scholar 

  • Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197

    PubMed  CAS  Google Scholar 

  • Mochizuki K, Gorovsky MA (2004) Small RNAs in genome rearrangement in Tetrahymena. Curr Opin Genet Dev 14:181–187

    PubMed  CAS  Google Scholar 

  • Mosig A, Sameith K, Stadler P (2006) Fragrep: an efficient search tool for fragmented patterns in genomic sequences. Genomics Proteomics Bioinformatics 4:56–60

    PubMed  CAS  Google Scholar 

  • Moss S, Morgan R (2004) The annexins. Genome Biol 5:219

    PubMed  Google Scholar 

  • Nagai K, Oubridge C, Kuglstatter A, Menichelli E, Isel C, Jovine L (2003) Structure, function and evolution of the signal recognition particle. EMBO J 22:3479–3485

    PubMed  CAS  Google Scholar 

  • Nair V, Zavolan M (2006) Virus-encoded microRNAs: novel regulators of gene expression. Trends Microbiol 14:169–175

    PubMed  CAS  Google Scholar 

  • Nakamura T, Prestayko AW, Busch H (1968) Studies on nucleolar 4 to 6 S ribonucleic acid of Novikoff hepatoma cells. J Biol Chem 243:1368–1375

    PubMed  CAS  Google Scholar 

  • Nazar RN (2004) Ribosomal RNA processing and ribosome biogenesis in eukaryotes. IUBMB Life 56:457–465

    Article  PubMed  CAS  Google Scholar 

  • Nellen W et al (1992) Mechanisms of gene regulation by endogenous and artificially introduced antisense RNA. Biochem Soc Trans 20:750–754

    PubMed  CAS  Google Scholar 

  • Ni J, Tien AL, Fournier MJ (1997) Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89:565–573

    PubMed  CAS  Google Scholar 

  • Nicoloso M, Qu LH, Michot B, Bachellerie JP (1996) Intron-encoded, antisense small nucleolar RNAs: the characterization of nine novel species points to their direct role as guides for the 2′-O-ribose methylation of rRNAs. J Mol Biol 260:178–195

    PubMed  CAS  Google Scholar 

  • Okafuji T, Abe F, Maeda Y (1997) Antisense-mediated regulation of Annexin VII gene expression during the transition from growth to differentiation in Dictyostelium discoideum. Gene 189:49

    PubMed  CAS  Google Scholar 

  • Okamura K, Ishizuka A, Siomi H, Siomi MC (2004) Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev 18:1655–1666

    PubMed  CAS  Google Scholar 

  • Omer AD, Ziesche S, Decatur WA, Fournier MJ, Dennis PP (2003) RNA-modifying machines in archaea. Mol Microbiol 48:617–629

    PubMed  CAS  Google Scholar 

  • Onodera Y, Haag JR, Ream T, Nunes PC, Pontes O, Pikaard CS (2005) Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120:613

    PubMed  CAS  Google Scholar 

  • Orum H, Nielsen H, Engberg J (1992) Structural organization of the genes encoding the small nuclear RNAs U1 to U6 of Tetrahymena thermophila is very similar to that of plant small nuclear RNA genes. J Mol Biol 227:114–121

    PubMed  CAS  Google Scholar 

  • Pannucci JA, Haas ES, Hall TA, Harris JK, Brown JW (1999) RNase P RNAs from some Archaea are catalytically active. Proc Natl Acad Sci USA 96:7803–7808

    PubMed  CAS  Google Scholar 

  • Parker JS, Barford D (2006) Argonaute: a scaffold for the function of short regulatory RNAs. Trends Biochem Sci 31:622–630

    PubMed  CAS  Google Scholar 

  • Paule MR, White RJ (2000) Survey and summary transcription by RNA polymerases I and III. Nucleic Acids Res 28:1283–1298

    PubMed  CAS  Google Scholar 

  • Pi M, Morio T, Urushihara H, Tanaka Y (1998) Characterization of a novel small RNA encoded by Dictyostelium discoideum mitochondrial DNA. Mol Gen Genet 257:124–131

    PubMed  CAS  Google Scholar 

  • Piccinelli P, Rosenblad MA, Samuelsson T (2005) Identification and analysis of ribonuclease P and MRP RNA in a broad range of eukaryotes. Nucleic Acids Res 33:4485–4495

    PubMed  CAS  Google Scholar 

  • Plath K, Mlynarczyk-Evans S, Nusinow DA, Panning B (2002) Xist RNA and the mechanism of X chromosome inactivation. Ann Rev Genet 36:233–278

    PubMed  CAS  Google Scholar 

  • Popova B, Kuhlmann M, Hinas A, Söderbom F, Nellen W (2006) HelF, a putative RNA helicase acts as a nuclear suppressor of RNAi but not antisense mediated gene silencing. Nucleic Acids Res 34:773–784

    PubMed  CAS  Google Scholar 

  • Prestayko AW, Tonato M, Busch H (1970) Low molecular weight RNA associated with 28 s nucleolar RNA. J Mol Biol 47:505–515

    PubMed  CAS  Google Scholar 

  • Reinders Y, Schulz I, Gräf R, Sickmann A (2006) Identification of novel Proteins in Dictyostelium discoideum by comparative proteomic approaches. J Proteome Res 5:589–598

    PubMed  CAS  Google Scholar 

  • Ridanpää M, Sistonen P, Rockas S, Rimoin DL, Makitie O, Kaitila I (2002) Worldwide mutation spectrum in cartilage-hair hypoplasia: ancient founder origin of the major70A → G mutation of the untranslated RMRP. Eur J Hum Genet 10:439–447

    PubMed  Google Scholar 

  • Ridanpää M et al (2001) Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia. Cell 104:195–203

    PubMed  Google Scholar 

  • Rogers J, Wall R (1980) A mechanism for RNA splicing. Proc Natl Acad Sci USA 77:1877–1879

    PubMed  CAS  Google Scholar 

  • Romby P, Vandenesch F, Wagner EGH (2006) The role of RNAs in the regulation of virulence-gene expression. Curr Opin Microbiol 9:229

    PubMed  CAS  Google Scholar 

  • Rosenblad MA, Zwieb C, Samuelsson T (2004) Identification and comparative analysis of components from the signal recognition particle in protozoa and fungi. BMC Genomics 5:5

    PubMed  Google Scholar 

  • Saito K et al (2006) Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev 20:2214–2222

    PubMed  CAS  Google Scholar 

  • Schattner P, Decatur WA, Davis CA, Ares M Jr, Fournier MJ, Lowe TM (2004) Genome-wide searching for pseudouridylation guide snoRNAs: analysis of the Saccharomyces cerevisiae genome. Nucleic Acids Res 32:4281–4296

    PubMed  CAS  Google Scholar 

  • Schmitt ME, Clayton DA (1993) Nuclear RNase MRP is required for correct processing of pre-5.8S rRNA in Saccharomyces cerevisiae. Mol Cell Biol 13:7935–7941

    PubMed  CAS  Google Scholar 

  • Schramm L, Hernandez N (2002) Recruitment of RNA polymerase III to its target promoters. Genes Dev 16:2593–2620

    PubMed  CAS  Google Scholar 

  • Simmer F et al (2002) Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr Biol 12:1317–1319

    PubMed  CAS  Google Scholar 

  • Singh SK, Gurha P, Tran EJ, Maxwell ES, Gupta R (2004) Sequential 2′-O-methylation of archaeal pre-tRNATrp nucleotides is guided by the intron-encoded but trans-acting box C/D ribonucleoprotein of pre-tRNA. J Biol Chem 279:47661–47671

    PubMed  CAS  Google Scholar 

  • Slomovic S, Laufer D, Geiger D, Schuster G (2006) Polyadenylation of ribosomal RNA in human cells. Nucleic Acids Res 34:2966–2975

    PubMed  CAS  Google Scholar 

  • Smale ST, Kadonaga JT (2003) The RNA polymerase II core promoter. Ann Rev Biochem 72:449–479

    PubMed  CAS  Google Scholar 

  • Söderbom F (2006) Small nucleolar RNAs: identification, structure, and function. In: Nellen W, Hammann C (eds) Small RNAs: analysis and regulatory functions. Springer Berlin Heidelberg New York 31–55

    Google Scholar 

  • Staley JP, Guthrie C (1998) Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92:315–326

    PubMed  CAS  Google Scholar 

  • Stathopoulos C, Kalpaxis DL, Drainas D (1995) Partial purification and characterization of RNase P from Dictyostelium discoideum. Eur J Biochem 228:976–980

    PubMed  CAS  Google Scholar 

  • Stein LD et al (2003) The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biol 1:E45

    PubMed  Google Scholar 

  • Steinert M, Heuner K (2005) Dictyostelium as host model for pathogenesis. Cell Microbiol 7:307–314

    PubMed  CAS  Google Scholar 

  • Stolc V et al (2004) A gene expression map for the euchromatic genome of Drosophila melanogaster. Science 306:655–660

    PubMed  CAS  Google Scholar 

  • Stolc V et al (2005) Identification of transcribed sequences in Arabidopsis thaliana by using high-resolution genome tiling arrays. Proc Natl Acad Sci USA 102:4453–4458

    PubMed  CAS  Google Scholar 

  • Storz G, Altuvia S, Wassarman KM (2005) An abundance of RNA regulators. Ann Rev Biochem 74:199–217

    PubMed  CAS  Google Scholar 

  • Stuart KD, Schnaufer A, Ernst NL, Panigrahi AK (2005) Complex management: RNA editing in trypanosomes. Trends Biochem Sci 30:97–105

    PubMed  CAS  Google Scholar 

  • Szafranski K, Lehmann R, Parra G, Guigo R, Glöckner G (2005) Gene organization features in A/T-rich organisms. J Mol Evol 60:90–98

    PubMed  CAS  Google Scholar 

  • Takeishi K, Kaneda S (1979) Low molecular weight nuclear RNA species in Dictyostelium discoideum. Nucleic Acids Symp Ser s125–127

  • Takeishi K, Kaneda S (1981) Isolation and characterization of small nuclear RNAs from Dictyostelium discoideum. J Biochem. 90:299–308

    PubMed  CAS  Google Scholar 

  • Tang TH et al (2002) Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc Natl Acad Sci USA 99:7536–7541

    PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome I (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796

    Google Scholar 

  • Thiel CT et al (2005) Severely incapacitating mutations in patients with extreme short stature identify RNA-processing endoribonuclease RMRP as an essential cell growth regulator. Am J Hum Genet 77:795–806

    PubMed  CAS  Google Scholar 

  • Tycowski KT, Steitz JA (2001) Non-coding snoRNA host genes in Drosophila: expression strategies for modification guide snoRNAs. Eur J Cell Biol 80:119–125

    PubMed  CAS  Google Scholar 

  • Tycowski KT, Smith CM, Shu MD, Steitz JA (1996) A small nucleolar RNA requirement for site-specific ribose methylation of rRNA in Xenopus. Proc Natl Acad Sci USA 93:14480–14485

    PubMed  CAS  Google Scholar 

  • Tycowski KT, You ZH, Graham PJ, Steitz JA (1998) Modification of U6 spliceosomal RNA is guided by other small RNAs. Mol Cell 2:629–638

    PubMed  CAS  Google Scholar 

  • Uliel S, Liang XH, Unger R, Michaeli S (2004) Small nucleolar RNAs that guide modification in trypanosomatids: repertoire, targets, genome organisation, and unique functions. Int J Parasitol 34:445–454

    PubMed  CAS  Google Scholar 

  • Upadhyay R, Bawankar P, Malhotra D, Patankar S (2005) A screen for conserved sequences with biased base composition identifies noncoding RNAs in the A-T rich genome of Plasmodium falciparum. Mol Biochem Parasitol 144:149–158

    PubMed  CAS  Google Scholar 

  • Valadkhan S (2005) snRNAs as the catalysts of pre-mRNA splicing. Curr Opin Chem Biol 9:603

    PubMed  CAS  Google Scholar 

  • Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515–524

    PubMed  CAS  Google Scholar 

  • Vankan P, Edoh D, Filipowicz W (1988) Structure and expression of the U5 snRNA gene of Arabidopsis thaliana. Conserved upstream sequence elements in plant U-RNA genes. Nucleic Acids Res 16:10425–10440

    PubMed  CAS  Google Scholar 

  • Vaucheret H (2005) RNA polymerase IV and transcriptional silencing. Nat Genet 37:659–660

    PubMed  CAS  Google Scholar 

  • Vitali P, Royo H, Seitz H, Bachellerie J-P, Hüttenhofer A, Cavaillé J (2003) Identification of 13 novel human modification guide RNAs. Nucleic Acids Res 31:6543–6551

    PubMed  CAS  Google Scholar 

  • Vitali P et al (2005) ADAR2-mediated editing of RNA substrates in the nucleolus is inhibited by C/D small nucleolar RNAs. J Cell Biol 169:745–753

    PubMed  CAS  Google Scholar 

  • Voinnet O (2005) Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet 6:206–220

    PubMed  CAS  Google Scholar 

  • Waibel F, Filipowicz W (1990) RNA-polymerase specificity of transcription of Arabidopsis U snRNA genes determined by promoter element spacing. Nature 346:199

    PubMed  CAS  Google Scholar 

  • Wassenegger M (2005) The role of the RNAi machinery in heterochromatin formation. Cell 122:13–16

    PubMed  CAS  Google Scholar 

  • Wassenegger M, Krczal G (2006) Nomenclature and functions of RNA-directed RNA polymerases. Trends Plant Sci 11:142–151

    PubMed  CAS  Google Scholar 

  • Watanabe T et al (2006) Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev 20:1732–1743

    PubMed  CAS  Google Scholar 

  • Weinberg RA, Penman S (1968) Small molecular weight monodisperse nuclear RNA. J Mol Biol 38:289–304

    PubMed  CAS  Google Scholar 

  • Werner A, Berdal A (2005) Natural antisense transcripts: sound or silence? Physiol Genomics 23:125–131

    PubMed  CAS  Google Scholar 

  • Will CL, Lührmann R (2001) Spliceosomal UsnRNP biogenesis, structure and function. Curr Opin Cell Biol 13:290–301

    PubMed  CAS  Google Scholar 

  • Will CL, Lührmann R (2005) Splicing of a rare class of introns by the U12-dependent spliceosome. Biol Chem 386:713–724

    PubMed  CAS  Google Scholar 

  • Williams JG, Noegel AA, Eichinger L (2005) Manifestations of multicellularity: Dictyostelium reports in. Trends Genet 21:392–398

    PubMed  CAS  Google Scholar 

  • Wise JA, Weiner AM (1980) Dictyostelium small nuclear RNA D2 is homologous to rat nucleolar RNA U3 and is encoded by a dispersed multigene family. Cell 22:109–118

    PubMed  CAS  Google Scholar 

  • Wise JA, Weiner AM (1981) The small nuclear RNAs of the cellular slime mold Dictyostelium discoideum. J Biol Chem 256:956–963

    PubMed  CAS  Google Scholar 

  • Yang C-Y, Zhou H, Luo J, Qu L-H (2005) Identification of 20 snoRNA-like RNAs from the primitive eukaryote, Giardia lamblia. Biochem Biophys Res Commun 328:1224–1231

    PubMed  CAS  Google Scholar 

  • Yoshida H, Yamada Y, Okamoto K (1991) DC6, a novel type of Dictyostelium discoideum gene regulated by secreted factors but not by cAMP. Differentiation 46:161–166

    PubMed  CAS  Google Scholar 

  • Yoshida H, Kumimoto H, Okamoto K (1994) dutA RNA functions as an untranslatable RNA in the development of Dictyostelium discoideum. Nucleic Acids Res 22:41–46

    PubMed  CAS  Google Scholar 

  • Yu Y-T, Scharl EC, Smith CM, Steitz JA (1999) The growing World of small nuclear ribonucleoproteins. In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA World, 2nd edn. Cold Spring Harbor Laboratory Press, New York, pp 487–524

  • Yuan G, Klambt C, Bachellerie JP, Brosius J, Hüttenhofer A (2003) RNomics in Drosophila melanogaster: identification of 66 candidates for novel non-messenger RNAs. Nucleic Acids Res 31:2495–2507

    PubMed  CAS  Google Scholar 

  • Yukawa Y et al (2005) Plant 7SL RNA genes belong to type 4 of RNA polymerase III- dependent genes that are composed of mixed promoters. Plant J 43:97–106

    PubMed  CAS  Google Scholar 

  • Zamore PD, Haley B (2005) Ribo-gnome: the big world of small RNAs. Science 309:1519–1524

    PubMed  CAS  Google Scholar 

  • Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33

    PubMed  CAS  Google Scholar 

  • Zemann A, op de Bekke A, Kiefmann M, Brosius J, Schmitz J (2006) Evolution of small nucleolar RNAs in nematodes. Nucl. Acids Res 34:2676–2685

    Google Scholar 

  • Zieve GW (1981) Two groups of small stable RNAs. Cell 25:296

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the members of our research group, Pontus Larsson, and Johan Reimegård for supplying unpublished data. Gerhart Wagner, Victor Ambros, and Jan Andersson are gratefully acknowledged for comments on the manuscript. This work was supported by grants from the European Community (FOSRAK, EC005120) and The Swedish Research Council (Linneaus grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredrik Söderbom.

Additional information

Communicated by S. Hohmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinas, A., Söderbom, F. Treasure hunt in an amoeba: non-coding RNAs in Dictyostelium discoideum . Curr Genet 51, 141–159 (2007). https://doi.org/10.1007/s00294-006-0112-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-006-0112-z

Keywords

Navigation