Skip to main content
Log in

Functional analysis of Kluyveromyces lactis carboxylic acids permeases: heterologous expression of KlJEN1 and KlJEN2 genes

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The present work describes a detailed physiological and molecular characterization of the mechanisms of transport of carboxylic acids in Kluyveromyces lactis. This yeast species presents two homologue genes to JEN1 of Saccharomyces cerevisiae: KlJEN1 encodes a monocarboxylate permease and KlJEN2 encodes a dicarboxylic acid permease. In the strain K. lactis GG1888, expression of these genes does not require an inducer and activity for both transport systems was observed in glucose-grown cells. To confirm their key role for carboxylic acids transport in K. lactis, null mutants were analyzed. Heterologous expression in S. cerevisiae has been performed and chimeric fusions with GFP showed their proper localization in the plasma membrane. S. cerevisiae jen1Δ cells transformed with KlJEN1 recovered the capacity to use lactic acid, as well as to transport labeled lactic acid by a mediated mechanism. When KlJEN2 was heterologously expressed, S. cerevisiae transformants gained the ability to transport labeled succinic and malic acids by a mediated mechanism, exhibiting, however, a poor growth in malic acid containing media. The results confirmed the role of KlJen1p and KlJen2p as mono and dicarboxylic acids permeases, respectively, not subjected to glucose repression, being fully functional in S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrade RP, Casal M (2001) Expression of the lactate permease gene JEN1 from the yeast Saccharomyces cerevisiae. Fungal Genet Biol 32:105–111

    Article  PubMed  CAS  Google Scholar 

  • Ausubel FA, Brent R, Kingston D, Moore D, Seidman JG, Smith JA, Struhl K (1998) In: Current protocols in molecular biology. Wiley, New York, pp 4.9.1–4.9.11

  • Breunig KD, Bolotin-Fukuhara M, Bianchi MM, Bourgarel D, Falcone C, Ferrero I, Frontali L, Goffrini P, Krijger JJ, Mazzoni C, Milkowski C, Steensma HY, Wesolowski-Louvel M (2000) Regulation of primary carbon metabolism in Kluyveromyces lactis. Enzyme Microb Technol 26:771–780

    Article  PubMed  CAS  Google Scholar 

  • Casal M, Cardoso H, Leão C (1996) Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae. Microbiology 142:1385–1390

    Article  PubMed  CAS  Google Scholar 

  • Casal M, Leão C (1995) Utilization of short-chain monocarboxylic acids by the yeast Torulaspora delbrueckii: specificity of the transport systems and their regulation. Biochim Biophys Acta 1267:122–130

    Article  PubMed  Google Scholar 

  • Casal M, Paiva S, Andrade RP, Gancedo C, Leão C (1999) The lactate-proton symport of Saccharomyces cerevisiae is encoded by JEN1. J Bacteriol 181:2620–2623

    PubMed  CAS  Google Scholar 

  • Cássio F, Leão C (1993) A comparative study on the transport of L(-)malic acid and other short-chain carboxylic acids in the yeast Candida utilis: evidence for a general organic acid permease. Yeast 9:743–752

    Article  PubMed  Google Scholar 

  • Cássio F, Leão C, van Uden N (1987) Transport of lactate and other short-chain monocarboxylates in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 53:509–513

    PubMed  Google Scholar 

  • Côrte-Real M, Leão C (1989) Transport of L-malic acid and other dicarboxylic acids in the yeast Candida sphaerica. Appl Microbiol Biotechnol 31:551–555

    Article  Google Scholar 

  • Côrte-Real M, Leão C (1990) Transport of malic acid and other dicarboxylic acids in the yeast Hansenula anomala. Appl Environ Microbiol 56:1109–1113

    PubMed  Google Scholar 

  • De Deken RH (1966) The Crabtree effect: a regulatory system in yeast. J Gen Microbiol 44:149–156

    PubMed  Google Scholar 

  • Ferrero I, Rossi C, Landini MP, Puglisi PP (1978) Role of the mithocondrial protein synthesis in the catabolite repression of the petite-negative yeast Kluyveromyces lactis. Biochem Biophys Res Commun 80:340–348

    Article  PubMed  CAS  Google Scholar 

  • Fonseca A, Spencer-Martins I, van Uden N (1991) Transport of lactic acid in Kluyveromyces marxianus: evidence for a monocarboxylate uniport. Yeast 7:775–780

    Article  PubMed  CAS  Google Scholar 

  • Gerós H, Cássio F, Leão C (2000) Utilization and transport of acetic acid in Dekkera anomala and their implications on the survival of the yeast in acidic environments. J Food Prot 63(1):96–101

    PubMed  Google Scholar 

  • Goffrini P, Algeri AA, Donnini C, Wésolowski-Louvel M, Ferrero I (1989) RAG1 and RAG2: nuclear genes involved in the dependence/independence on mitochondrial respiratory function for growth on sugars. Yeast 5(2):99–106

    Article  PubMed  CAS  Google Scholar 

  • Grobler J, Bauer F, Subden RE, van Vuuren HJJ (1995) The mae1 gene of Schizosaccharomyces pombe encodes a permease for malate and other C4 dicarboxylic acids. Yeast 11:1485–1491

    Article  PubMed  CAS  Google Scholar 

  • Güldener U, Heck S, Fiedler T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524

    Article  PubMed  Google Scholar 

  • Leão C, van Uden N (1986) Transport of lactate and other short chain monocarboxylates in the yeast Candida utilis. Appl Microbiol Biotechnol 23:389–393

    Article  Google Scholar 

  • Lodi T, Fontanesi F, Ferrero I, Donnini C (2004) Carboxylic acids permeases in yeast: two genes in Kluyveromyces lactis. Gene 339:111–119

    Article  PubMed  CAS  Google Scholar 

  • Milkowski C, Krampe S, Weirich J, Hasse V, Boles E, Breunig KD (2001) Feedback regulation of glucose transporter gene transcription in Kluyveromyces lactis by glucose uptake. J Bacteriol 183(18):5223–5229

    Article  PubMed  CAS  Google Scholar 

  • Mumberg D, Mailer R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122

    Article  PubMed  CAS  Google Scholar 

  • Osothsilp C, Subden RE (1986) Malate transport in Schizosaccharomyces pombe. J Bacteriol 168:1439–1443

    PubMed  CAS  Google Scholar 

  • Paiva S, Devaux F, Barbosa S, Jacq C, Casal M (2004) Ady2p is essencial for the acetate permease activity in the yeast Saccharomyces cerevisiae. Yeast 21(3):201–210

    Article  PubMed  CAS  Google Scholar 

  • Paiva S, Kruckeberg AL, Casal M (2002) Utilization of green fluorescent protein as a marker for studying the expression and turnover of the monocarboxylate permease Jen1p of Saccharomyces cerevisiae. Biochem J 363(Pt 3):737–744

    Article  PubMed  CAS  Google Scholar 

  • Prior C, Mamessier P, Fukuhara H, Chen XJ, Wésolowski-Louvel M (1993) The hexokinase gene is required for transcriptional regulation of the glucose transporter gene RAG1 in Kluyveromyces lactis. Mol Cell Biol 13(7):3882–3889

    PubMed  CAS  Google Scholar 

  • Queirós O (2002) Transporte e utilização de ácidos dicarboxílicos nas leveduras Kluyveromyces sp. e Saccharomyces cerevisiae: uma abordagem fisiológica, bioquímica e genética. Ph.D. Thesis, University of Minho

  • Queirós O, Casal M, Althoff S, Moradas-Ferreira P, Leão C (1998) Isolation and characterization of Kluyveromyces marxianus mutants deficient in malate transport. Yeast 14:401–407

    Article  PubMed  Google Scholar 

  • Queirós O, Paiva S, Moradas-Ferreira P, Casal M (2003) Molecular and physiological characterization of monocarboxylic acids permeases in the yeast Kluyveromyces lactis. Yeast 20:S237

    Google Scholar 

  • Radler F (1993) Yeasts—metabolism of organic acids. In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood Academic Publishers, Switerzland, pp 165–182

    Google Scholar 

  • Salmon JM (1987) L-malic acid permeation in resting cells of anaerobically grown Saccharomyces cerevisiae. Biochim Biophys Acta 901:30–34

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritisch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Snoek IS, Steensma HY (2006) Why does Kluyveromyces lactis not grow under anaerobic conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces lactis genome. FEMS Yeast Res 6(3):393–403

    Article  PubMed  CAS  Google Scholar 

  • Soares-Silva I, Paiva S, Kötter P, Entian K-D, Casal M (2004) Disruption of JEN1 from Candida albicans impairs the transport of lactate. Mol Membr Biol 21:401–411

    Article  CAS  Google Scholar 

  • Soares-Silva I, Schüller D, Andrade RP, Baltazar F, Cássio F, Casal M (2003) Functional expression of the lactate permease Jen1p of Saccharomyces cerevisisiae in Pichia pastoris. Biochem J 376(Pt 3):781–787

    Article  PubMed  CAS  Google Scholar 

  • Sousa MJ, Miranda L, Côrte-Real M, Leão C (1996) Transport of acetic acid in Zygosaccharomyces bailii: effects of ethanol and their implications on the resistance of the yeast to acidic environments. Appl Environ Microbiol 62:3152–3157

    PubMed  CAS  Google Scholar 

  • Sousa MJ, Mota M, Leão C (1992) Transport of malic acid in the yeast Schizosaccharomyces pombe: evidence for a proton-dicarboxylate symport. Yeast 8:1025–1031

    Article  PubMed  CAS  Google Scholar 

  • Steensma HY (2003) Removal of dominant markers from the Kluyveromyces lactis genome using Cre/loxP system. In: Wolf K (ed) Non-convencional yeasts in genetics biochemistry and biotechnology. Springer, Berlin Heidelberg New York pp 175–178

    Google Scholar 

  • Thomas BJ, Rothstein R (1989) Elevated recombination rates in transcriptionally active DNA. Cell 56:619–630

    Article  PubMed  CAS  Google Scholar 

  • Weirich J, Goffrini P, Kuger P, Ferrero I, Breunig KD (1997) Influence of mutations in hexose-transporter genes on glucose repression in Kluyveromyces lactis. Eur J Biochem 249(1):248–257

    Article  PubMed  CAS  Google Scholar 

  • Wésolowski-Louvel M, Breunig KD, Fukuhara H (1996) Kluyveromyces lactis. In: Wolf K (ed) Nonconventional yeasts in biotechnology, a handbook. Springer, Berlin Heidelberg New York, pp 139–201

    Google Scholar 

  • Zmijewski MJJr, MacQuillan AM (1975) Dual effects of glucose on dicarboxylic acids transport in Kluyveromyces lactis. Can J Microbiol 21:473–480

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Portuguese grant POCTI/BIO/38106/2001 (Eixo 2, Medida 2.3, QCAIII—FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarida Casal.

Additional information

Communicated by K. Breunig.

O. Queirós and L. Pereira contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Queirós, O., Pereira, L., Paiva, S. et al. Functional analysis of Kluyveromyces lactis carboxylic acids permeases: heterologous expression of KlJEN1 and KlJEN2 genes. Curr Genet 51, 161–169 (2007). https://doi.org/10.1007/s00294-006-0107-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-006-0107-9

Keywords

Navigation