Skip to main content
Log in

Sequences in the N-terminal cytoplasmic domain of Saccharomyces cerevisiae maltose permease are required for vacuolar degradation but not glucose-induced internalization

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

In Saccharomyces cerevisiae, glucose addition to maltose fermenting cells causes a rapid loss of maltose transport activity and ubiquitin-mediated vacuolar proteolysis of maltose permease. GFP-tagged Mal61 maltose permease was used to explore the role of the N-terminal cytoplasmic domain in glucose-induced inactivation. In maltose-grown cells, Mal61/HA-GFP localizes to the cell surface and, surprisingly, to the vacuole. Studies of end3Δ and doa4Δ mutants indicate that a slow constitutive internalization of Mal61/HA-GFP is required for its vacuolar localization. Site-specific mutagenesis of multiple serine/threonine residues in a putative PEST sequence of the N-terminal cytoplasmic domain of maltose permease blocks glucose-induced Mal61p degradation but does not affect the rapid loss of maltose transport activity associated with glucose-induced internalization. The internalized multiple Ser/Thr mutant protein co-localizes with Snf7p in a putative late endosome or E-compartment. Further, alteration of a putative dileucine [D/EExxxLL/I] motif at residues 64–70 causes a significant defect in maltose transport activity and mislocalization to an E-compartment but appears to have little impact on glucose-induced internalization. We conclude that the N-terminal cytoplasmic domain of maltose permease is not the target of the signaling pathways leading to glucose-induced internalization of Mal61 permease but is required for its subsequent delivery to the vacuole for degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Augustin R, Riley J, Moley KH (2005) GLUT8 contains a [DE]XXXL[LI] sorting motif and localizes to a late endosomal/lysosomal compartment. Traffic 6:1196–1212

    Article  PubMed  CAS  Google Scholar 

  • Babst M, Katzmann DJ, Estepa-Sabal EJ, Meerloo T, Emr SD (2002) ESCRT-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. Dev Cell 3:271–282

    Article  PubMed  CAS  Google Scholar 

  • Beck T, Schmidt A, Hall MN (1999) Starvation induces vacuolar targeting and degradation of the tryptophan permease in yeast. J Cell Biol 146:1227–1238

    Article  PubMed  CAS  Google Scholar 

  • Benedetti H, Raths S, Crausaz F, Riezman H (1994) The END3 gene encodes a protein that is required for the internalization step of endocytosis and for actin cytoskeleton organization in yeast. Mol Biol Cell 5:1023–1037

    PubMed  CAS  Google Scholar 

  • Boles E, Hollenberg CP (1997) The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev 21:85–111

    Article  PubMed  CAS  Google Scholar 

  • Bonifacino JS, Traub LM (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72:395–447

    Article  PubMed  CAS  Google Scholar 

  • Charron MJ, Michels CA (1988) The naturally occurring alleles of MAL1 in Saccharomyces species evolved by various mutagenic processes including chromosomal rearrangement. Genetics 120:83–93

    PubMed  CAS  Google Scholar 

  • Cheng Q, Michels CA (1989) The maltose permease encoded by the MAL61 gene of Saccharomyces cerevisiae exhibits both sequence and structural homology to other sugar transporters. Genetics 123:477–484

    PubMed  CAS  Google Scholar 

  • Cheng Q, Michels CA (1991) MAL11 and MAL61 encode the inducible high-affinity maltose transporter of Saccharomyces cerevisiae. J Bacteriol 173:1817–1820

    PubMed  CAS  Google Scholar 

  • Danzi SE, Zhang B, Michels CA (2000) Alterations in the Saccharomyces MAL-activator cause constitutivity but can be suppressed by intragenic mutations. Curr Genet 38:233–240

    Article  PubMed  CAS  Google Scholar 

  • D’Hondt K, Heese-Peck A, Riezman H (2000) Protein and lipid requirements for endocytosis. Annu Rev Genet 34:255–295

    Article  PubMed  CAS  Google Scholar 

  • Dupre S, Haguenauer-Tsapis R (2001) Deubiquitination step in the endocytic pathway of yeast plasma membrane proteins: crucial role of Doa4p ubiquitin isopeptidase. Mol Cell Biol 21:4482–4494

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Davis NG (2000) Akr1p and the type I casein kinases act prior to the ubiquitination step of yeast endocytosis: Akr1p is required for kinase localization to the plasma membrane. Mol Cell Biol 20:5350–5359

    Article  PubMed  CAS  Google Scholar 

  • Funk M, Niedenthal R, Mumberg D, Brinkmann K, Ronicke V, Henkel T (2002) Vector systems for heterologous expression of proteins in Saccharomyces cerevisiae. Methods Enzymol 350:248–257

    Article  PubMed  CAS  Google Scholar 

  • Gadura N, Robinson LC, Michels CA (2006) Glc7-Reg1 phosphatase signals to Yck1,2 casein kinase 1 to regulate transport activity and glucose-induced inactivation of Saccharomyces maltose permease. Genetics 172:1427–1429

    Article  PubMed  CAS  Google Scholar 

  • Gibson AW et al (1997) Constitutive mutations of the Saccharomyces cerevisiae MAL-activator genes MAL23, MAL43, MAL63, and mal64. Genetics 146:1287–1298

    PubMed  CAS  Google Scholar 

  • Helliwell SB, Losko S, Kaiser CA (2001) Components of a ubiquitin ligase complex specify polyubiquitination and intracellular trafficking of the general amino acid permease. J Cell Biol 153:649–662

    Article  PubMed  CAS  Google Scholar 

  • Hicke L (1997) Ubiquitin-dependent internalization and down-regulation of plasma membrane proteins. FASEB J 11:1215–1226

    PubMed  CAS  Google Scholar 

  • Hicke L (1999) Gettin’ down with ubiquitin: turning off cell-surface receptors, transporters and channels. Trends Cell Biol 9:107–112

    Article  PubMed  CAS  Google Scholar 

  • Hicke L, Riezman H (1996) Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell 84:277–287

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser M (1996) Ubiquitin-dependent protein degradation. Annu Rev Genet 30:405–439

    Article  PubMed  CAS  Google Scholar 

  • Horak J, Wolf DH (2001) Glucose-induced monoubiquitination of the Saccharomyces cerevisiae galactose transporter is sufficient to signal its internalization. J Bacteriol 183:3083–3088

    Article  PubMed  CAS  Google Scholar 

  • Hu Z, Yue Y, Jiang H, Zhang B, Sherwood PW, Michels CA (2000) Analysis of the mechanism by which glucose inhibits maltose induction of MAL gene expression in Saccharomyces. Genetics 154:121–132

    PubMed  CAS  Google Scholar 

  • Huh WK et al (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Medintz I, Michels CA (1997) Two glucose sensing/signaling pathways stimulate glucose-induced inactivation of maltose permease in Saccharomyces. Mol Biol Cell 8:1293–1304

    PubMed  CAS  Google Scholar 

  • Jiang H, Tatchell K, Liu S, Michels CA (2000) Protein phosphatase type-1 regulatory subunits Reg1p and Reg2p act as signal transducers in the glucose-induced inactivation of maltose permease in Saccharomyces cerevisiae. Mol Gen Genet 263:411–422

    Article  PubMed  CAS  Google Scholar 

  • Joost HG, Thorens B (2001) The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Mol Membr Biol 18:247–256

    Article  PubMed  CAS  Google Scholar 

  • Kennelly PJ (1998) Prokaryotic protein-serine/threonine phosphatases. Methods Mol Biol 93:1–21

    PubMed  CAS  Google Scholar 

  • Longtine MS et al (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961

    Article  PubMed  CAS  Google Scholar 

  • Magasanik B, Kaiser CA (2002) Nitrogen regulation in Saccharomyces cerevisiae. Gene 290:1–18

    Article  PubMed  CAS  Google Scholar 

  • Marchal C, Dupre S, Urban-Grimal D (2002) Casein kinase I controls a late step in the endocytic trafficking of yeast uracil permease. J Cell Sci 115:217–226

    PubMed  CAS  Google Scholar 

  • Marchal C, Haguenauer-Tsapis R, Urban-Grimal D (1998) A PEST-like sequence mediates phosphorylation and efficient ubiquitination of yeast uracil permease. Mol Cell Biol 18:314–321

    PubMed  CAS  Google Scholar 

  • Marchal C, Haguenauer-Tsapis R, Urban-Grimal D (2000) Casein kinase I-dependent phosphorylation within a PEST sequence and ubiquitination at nearby lysines signal endocytosis of yeast uracil permease. J Biol Chem 275:23608–23614

    Article  PubMed  CAS  Google Scholar 

  • Medintz I, Jiang H, Han EK, Cui W, Michels CA (1996) Characterization of the glucose-induced inactivation of maltose permease in Saccharomyces cerevisiae. J Bacteriol 178:2245–2254

    PubMed  CAS  Google Scholar 

  • Medintz I, Jiang H, Michels CA (1998) The role of ubiquitin conjugation in glucose-induced proteolysis of Saccharomyces maltose permease. J Biol Chem 273:34454–34462

    Article  PubMed  CAS  Google Scholar 

  • Medintz I, Wang X, Hradek T, Michels CA (2000) A PEST-like sequence in the N-terminal cytoplasmic domain of Saccharomyces maltose permease is required for glucose-induced proteolysis and rapid inactivation of transport activity. Biochemistry 39:4518–4526

    Article  PubMed  CAS  Google Scholar 

  • Michels CA, Read E, Nat K, Charron MJ (1992) The telomere-associated MAL3 locus of Saccharomyces is a tandem array of repeated genes. Yeast 8:655–665

    Article  PubMed  CAS  Google Scholar 

  • Niedenthal RK, Riles L, Johnston M, Hegemann JH (1996) Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast. Yeast 12:773–786

    Article  PubMed  CAS  Google Scholar 

  • Pond L et al (1995) A role for acidic residues in di-leucine motif-based targeting to the endocytic pathway. J Biol Chem 270:19989–19997

    Article  PubMed  CAS  Google Scholar 

  • Raymond CK, Howald-Stevenson I, Vater CA, Stevens TH (1992) Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol Biol Cell 3:1389–1402

    PubMed  CAS  Google Scholar 

  • Rechsteiner M (1988) Regulation of enzyme levels by proteolysis: the role of pest regions. Adv Enzyme Regul 27:135–151

    Article  PubMed  CAS  Google Scholar 

  • Robinson MS (2004) Adaptable adaptors for coated vesicles. Trends Cell Biol 14:167–174

    Article  PubMed  CAS  Google Scholar 

  • Roth AF, Davis NG (1996) Ubiquitination of the yeast a-factor receptor. J Cell Biol 134:661–674

    Article  PubMed  CAS  Google Scholar 

  • Sandoval IV, Martinez-Arca S, Valdueza J, Palacios S, Holman GD (2000) Distinct reading of different structural determinants modulates the dileucine-mediated transport steps of the lysosomal membrane protein LIMPII and the insulin-sensitive glucose transporter GLUT4. J Biol Chem 275:39874–39885

    Article  PubMed  CAS  Google Scholar 

  • Traub LM, Apodaca G (2003) AP-1B: polarized sorting at the endosome. Nat Cell Biol 5:1045–1047

    Article  PubMed  CAS  Google Scholar 

  • Tsacoumangos A, Kil SJ, Ma L, Sonnichsen FD, Carlin C (2005) A novel dileucine lysosomal-sorting-signal mediates intracellular EGF-receptor retention independently of protein ubiquitylation. J Cell Sci 118:3959–3971

    Article  PubMed  CAS  Google Scholar 

  • Umebayashi K (2003) The roles of ubiquitin and lipids in protein sorting along the endocytic pathway. Cell Struct Funct 28:443–453

    Article  PubMed  CAS  Google Scholar 

  • Vida TA, Emr SD (1995) A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol 128:779–792

    Article  PubMed  CAS  Google Scholar 

  • Volland C, Garnier C, Haguenauer-Tsapis R (1992) In vivo phosphorylation of the yeast uracil permease. J Biol Chem 267:23767–23771

    PubMed  CAS  Google Scholar 

  • Volland C, Urban-Grimal D, Geraud G, Haguenauer-Tsapis R (1994) Endocytosis and degradation of the yeast uracil permease under adverse conditions. J Biol Chem 269:9833–9841

    PubMed  CAS  Google Scholar 

  • Wang X, Bali M, Medintz I, Michels CA (2002) Intracellular maltose is sufficient to induce MAL gene expression in Saccharomyces cerevisiae. Eukaryot Cell 1:696–703

    Article  PubMed  CAS  Google Scholar 

  • Wendland B (2002) Epsins: adaptors in endocytosis? Nat Rev Mol Cell Bio 3:971–977

    Article  CAS  Google Scholar 

  • Wieczorke R, Krampe S, Weierstall T, Freidel K, Hollenberg CP, Boles E (1999) Concurrent knockout of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 464:123–128

    Article  PubMed  CAS  Google Scholar 

  • Williams LE, Lemoine R, Sauer N (2000) Sugar transporters in higher plants—a diversity of roles and complex regulation. Trends Plant Sci 5:283–290

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Lucy Robinson for providing strains, helpful in-depth discussions, and critical reading of the manuscript and Xin Wang for providing pUN30-MAL61/HA-GFP. We also thank James V. Falvo and Erin O’Shea for providing us with the strain carrying the SNF7-RFP fusion gene and Aaron Mitchell for providing plasmid pWX307. Confocal imaging and fluorescence analysis and Western blot quantification were done in the Core Facilities for Cell and Molecular Biology of Queens College—CUNY. We greatly appreciate the assistance of Areti Tsiola for the same. This work was carried out in partial fulfillment of the requirements of the Ph.D. degree from the Graduate School of CUNY (N. G.) and was supported by a grant from the NIH (GM28216) to C. A. M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinne A. Michels.

Additional information

Communicated by Stefan Hohmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gadura, N., Michels, C.A. Sequences in the N-terminal cytoplasmic domain of Saccharomyces cerevisiae maltose permease are required for vacuolar degradation but not glucose-induced internalization. Curr Genet 50, 101–114 (2006). https://doi.org/10.1007/s00294-006-0080-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-006-0080-3

Keywords

Navigation