Current Genetics

, Volume 48, Issue 6, pp 366–379 | Cite as

Diversity of the exoproteome of Fusarium graminearum grown on plant cell wall

  • Vincent Phalip
  • François Delalande
  • Christine Carapito
  • Florence Goubet
  • Didier Hatsch
  • Emmanuelle Leize-Wagner
  • Paul Dupree
  • Alain Van Dorsselaer
  • Jean-Marc Jeltsch
Research Article


The exoproteome of the fungus Fusarium graminearum grown on glucose and on hop (Humulus lupulus, L.) cell wall has been investigated. The culture medium was found to contain a higher quantity of proteins and the proteins are more diverse when the fungus is grown on cell wall. Using both 1D and 2D electrophoresis followed by mass spectrometry analysis and protein identification based on similarity searches, 84 unique proteins were identified in the cell wall-grown fungal exoproteome. Many are putatively implicated in carbohydrate metabolism, mainly in cell wall polysaccharide degradation. The predicted carbohydrate-active enzymes fell into 24 different enzymes classes, and up to eight different proteins within a same class are secreted. This indicates that fungal metabolism becomes oriented towards synthesis and secretion of a whole arsenal of enzymes able to digest almost the complete plant cell wall. Cellobiohydrolase is one of the only four proteins found both after growth on glucose and on plant cell wall and we propose that this enzyme could act as a sensor of the extracellular environment. Extensive knowledge of this very diverse F. graminearum exoproteome is an important step towards the full understanding of Fusarium/plants interactions.


Fungi Fusarium graminearum Hydrolases Plant cell wall Polysaccharide degradation CWDE regulation 



This work was supported by the Cophoudal (Brumath, France) and by the French agency for agriculture development (ADAR). Didier Hatsch was funded by a Ph.D. fellowship from the Region Alsace. We thank the Bruker Daltonics society and the CNRS for Christine Carapito’s Ph.D. fellowship and Aventis for François Delalande’s post-doc fellowship. Anne Forster and Daniéle Thierse are greatly acknowledged for their technical competence. We are grateful to Prof. Pierre Oudet and Jan DeMey for helpful and interesting discussions and materials. The work performed at Cambridge was supported by grants from the BBSRC.

Supplementary material

294_2005_40_MOESM1_ESM.pdf (154 kb)
Supplementary material


  1. Agrios GN (1997) Plant pathology, 4th edn. Academic Press, LondonGoogle Scholar
  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedGoogle Scholar
  3. Apel PC, Panaccione DG, Holden FR, Walton JD (1993) Cloning and targeted gene disruption of XYL1, a beta 1,4-xylanase gene from the maize pathogen Cochliobolus carbonum. Mol Plant Microbe In 6:467–473Google Scholar
  4. Aro N, Pakula T, Penttilä M (2005) Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 29:719–739CrossRefPubMedGoogle Scholar
  5. Bao W, Renganathan V (1992) Cellobiose oxidase of Phanerochaete chrysosporium enhances crystalline cellulose degradation by cellulases. FEBS Lett 302:77–80CrossRefPubMedGoogle Scholar
  6. Bergey DR, Howe GA, Ryan CA (1996) Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals. Proc Natl Acad Sci USA 93:12053–12058CrossRefPubMedGoogle Scholar
  7. Borkovich KA, Alex LA, Yarden O, Freitag M, Turner GE, Read ND, Seiler S et al (2004) Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 68:1–108CrossRefPubMedGoogle Scholar
  8. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  9. Chacón-Martínez CA, Anzola JM, Rojas A, Hernández F, Junca H, Ocampo W, Del Portillo P (2004) Identification and characterization of the α-l-arabinofuranosidase B of Fusarium oxysporum f. sp. dianthi. Physiol Mol Plant Pathol 64:201–208CrossRefGoogle Scholar
  10. Civas A, Eberhard R, Le Dizet P, Petek F (1984) Glycosidases induced in Aspergillus tamarii. Secreted alpha-d-galactosidase and beta-d-mannanase. Biochem J 219:857–863PubMedGoogle Scholar
  11. Coutinho PM, Henrissat B (1999) Carbohydrate-active enzymes: an integrated database approach. In: Gilbert HJ, Davies G, Henrissat B, Svensson B (eds) Recent advances in carbohydrate bioengineering. The Royal Society of Chemistry, Cambridge, pp 3–12Google Scholar
  12. De Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell walls polysaccharides. Microbiol Mol Biol Rev 65:497–522CrossRefPubMedGoogle Scholar
  13. Di Pietro A, Madrid MP, Caracuel Z, Delgado-Jarana J, Roncero MIG (2003) Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Mol Plant Pathol 4:315–325CrossRefGoogle Scholar
  14. Eisenhaber B, Schneider G, Wildpaner M, Eisenhaber F (2004) A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe. J Mol Biol 337:243–253CrossRefPubMedGoogle Scholar
  15. Evans T, Hedger JN (2001) Degradation of plant cell wall polymers. In: Gadd JM (ed) Fungi in bioremediation. Cambridge University Press, Cambridge, pp 1–26Google Scholar
  16. Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, Goedegebuur F et al (2003) Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem 278:31988–31997CrossRefPubMedGoogle Scholar
  17. Fry SC (2000) The growing plant cell wall: chemical and metabolic analysis. The Blackburn Press, CaldwellGoogle Scholar
  18. Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W et al (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868CrossRefPubMedGoogle Scholar
  19. Gao M, Kieliszewski MJ, Lamport DTA, Showalter AM (1999) Isolation, characterization and immunolocalization of a novel, modular tomato arabinogalactan-protein corresponding to the LeAGP-1 gene. Plant J 18:43–55CrossRefPubMedGoogle Scholar
  20. Goubet F, Jackson P, Deery MJ, Dupree P (2002) Polysaccharide analysis using carbohydrate gel electrophoresis. A method to study plant cell wall polysaccharides and polysaccharide hydrolases. Anal Biochem 300:53–68CrossRefPubMedGoogle Scholar
  21. Goubet F, Morriswood B, Dupree P (2003) Analysis of methylated and unmethylated polygalacturonic acid structure by PACE: polysaccharide analysis using carbohydrate gel electrophoresis. Anal Biochem 321:174–182CrossRefPubMedGoogle Scholar
  22. Grishutin SG, Gusakov AV, Markov AV, Ustinov BB, Semenova MV, Sinitsyn AP (2004) Specific xyloglucanases as a new class of polysaccharide-degrading enzymes. Biochim Biophys Acta 1674:268–281PubMedGoogle Scholar
  23. Gusakov AV, Sinitsyn AP, Salanovich TN, Bukhtojarov FE, Markov AV, Ustinov BB, Zeijl CV, Punt P, Burlingame R (2005) Purification, cloning and characterisation of two forms of thermostable and highly active cellobiohydrolase I (Cel7A) produced by the industrial strain of Chrysosporium lucknowense. Enz Microbial Technol 36:57–69CrossRefGoogle Scholar
  24. Handford MG, Baldwin TC, Goubet F, Prime TA, Miles J, Yu X, Dupree P (2003) Localisation and characterisation of cell wall mannan polysaccharides in Arabidopsis thaliana. Planta 218:27–36CrossRefPubMedGoogle Scholar
  25. Hatsch D, Phalip V, Jeltsch J-M (2002) Development of a bipartite method for Fusarium identification based on cellobiohydrolase-C: CAPS and western blot analysis. FEMS Microbiol Lett 213:245–249CrossRefPubMedGoogle Scholar
  26. Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432Google Scholar
  27. Isshiki A, Akimitsu K, Yamamoto M, Yamamoto H (2001) Endopolygalacturonase is essential for citrus black rot caused by Alternaria citri but not brown spot caused by Alternaria alternata. Mol Plant Microbe In 14:749–757CrossRefGoogle Scholar
  28. Jackowiak H, Packa D, Wiwart M, Perkowski J (2005) Scanning electron microscopy of Fusarium damaged kernels of spring wheat. Int J Food Microbiol 98:113–123CrossRefPubMedGoogle Scholar
  29. Jahr H, Dreier J, Meletzus D, Bahro R, Eichenlaub R (2000) The endo-β-1,4-glucanase CelA of Clavibacter michiganensis subsp. michiganensis is a pathogenicity determinant required for induction of bacterial wilt of tomato. Mol Plant Microbe In 13:703–714CrossRefGoogle Scholar
  30. Kazemi-Pour N, Condemine G, Hugouvieux-Cotte-Pattat N (2004) The secretome of the plant pathogenic bacterium Erwinia chrysanthemi. Proteomics 4:3177–3186CrossRefPubMedGoogle Scholar
  31. Kimura I, Yoshioka N, Tajima S (1998) Purification and characterization of an endo-1,4-β-d-galactanase from Aspergillus sojae. J Ferment Bioeng 85:48–52CrossRefGoogle Scholar
  32. Mannhaupt G, Montrone C, Haase D, Mewes W, Aign V, Hoheisel JD, Fartmann B, Nyakatura G, Kempken F, Maier J, Schulte U (2003) What’s in the genome of a filamentous fungus? Analysis of the Neurospora genome sequence. Nucleic Acids Res 31:1944–1954CrossRefPubMedGoogle Scholar
  33. Margolles-Clark E, Ilmén M, Penttilä M (1997) Expression patterns of ten hemicellulase genes of the filamentous fungus Trichoderma reesei on various carbon sources. J Biotechnol 57:167–179CrossRefGoogle Scholar
  34. Martel MB, Hervé du Penhoat C, Létoublon R, Fèvre M (2002) Purification and characterization of a glucoamylase secreted by the plant pathogen Sclerotinia sclerotiorum. Can J Microbiol 48:212–218CrossRefPubMedGoogle Scholar
  35. Medina ML, Kiernan UA, Francisco WA (2004) Proteomic analysis of rutin-induced secreted proteins from Aspergillus flavus. Fungal Genet Biol 41:327–335CrossRefPubMedGoogle Scholar
  36. Medve J, Stahlberg J, Tjerneld F (1994) Adsorption and synergism of cellobiohydrolase I and II of Trichoderma reesei during hydrolysis of microcrystalline cellulose. Biotechnol Bioeng 44:1064–1073CrossRefPubMedGoogle Scholar
  37. Mitchell DB, Weimann K, Vogel BJ, Pasamontes L, van Loon APGM (1997) The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila. Microbiology 143:245–252PubMedGoogle Scholar
  38. Mouyna I, Fontaine T, Vai M, Monod M, Fonzi WA, Diaquin M, Popolo L, Hartland RP, Latgé J-P (2000) Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J Biol Chem 275:14882–14889CrossRefPubMedGoogle Scholar
  39. Müller U, Tenberge KB, Oeser B, Tudzynski P (1997) Cel1, probably encoding a cellobiohydrolase lacking the substrate binding domain, is expressed in the initial infection phase of Claviceps purpurea on Secale cereale. Mol Plant Microbe In 10:268–279CrossRefGoogle Scholar
  40. Oeser B, Heidrich PM, Müller U, Tudzynski P, Tenberge KB (2002) Polygalacturonase is a pathogenicity factor in the Claviceps purpurea/rye interaction. Fungal Genet Biol 36:176–186CrossRefPubMedGoogle Scholar
  41. Popolo L, Vai M, Gatti E, Porello S, Bonfante P, Balestrini R, Alberghina L (1993) Physiological analysis of mutants indicates involvement of the Saccharomyces cerevisiae GPI-anchored protein gp115 in morphogenesis and cell separation. J Bacteriol 175:1879–1885PubMedGoogle Scholar
  42. Richert S, Luche S, Chevallet M, Van Dorsselaer A, Leize-Wagner E, Rabilloud T (2004) About the mechanism of interference of silver staining with peptide mass spectrometry. Proteomics 4:909–916CrossRefPubMedGoogle Scholar
  43. Rogers LM, Kim Y-K, Guo W, Gonzalez-Candelas L, Li D, Kolattukudy PE (2000) Requirement for either a host- or pectin-induced pectate lyase for infection of Pisum sativum by Nectria hematococca. Proc Natl Acad Sci USA 97:9813–9818CrossRefPubMedGoogle Scholar
  44. Saporito-Irwin SM, Birse CE, Sypherd PS, Fonzi WA (1995) PHR1, a pH-regulated gene of Candida albicans, is required for morphogenesis. Mol Cell Biol 15:601–613PubMedGoogle Scholar
  45. Schaeffer HJ, Leykam J, Walton JD (1994) Cloning and targeted gene disruption of EXG1, encoding exo-β1,3-glucanase, in the phytopathogenic fungus Cochliobolus carbonum. Appl Environ Microbiol 60:594–598PubMedGoogle Scholar
  46. Shieh M-T, Brown RL, Whitehead MP, Cary JW, Cotty PJ, Cleveland TE, Dean RA (1997) Molecular genetic evidence for the involvement of a specific polygalacturonase, P2c, in the invasion and spread of Aspergillus flavus in cotton bolls. Appl Environ Microbiol 63:3548–3552PubMedGoogle Scholar
  47. Skadsen RW, Hohn TM (2004) Use of Fusarium graminearum transformed with gfp to follow infection patterns in barley and Arabidopsis. Physiol Mol Plant Pathol 64:45–53CrossRefGoogle Scholar
  48. Sposato P, Ahn JH, Walton JD (1995) Characterization and disruption of a gene in the maize pathogen Cochliobolus carbonum encoding a cellulase lacking a cellulose binding domain and hinge region. Mol Plant Microbe In 8:602–609Google Scholar
  49. Ten Have A, Mulder W, Visser J, van Kan JAL (1998) The endopolygalacturonase gene Bcpg1 is required to full virulence of Botrytis cinerea. Mol Plant Microbe In 11:1009–1016CrossRefGoogle Scholar
  50. Tsuji Y, Yamamoto K, Tochikura T (1990) Formation of deglycosylated α-l-fucosidase by endo-β-N-acetylglucosaminidase in Fusarium oxysporum. Appl Environ Microbiol 56:928–933PubMedGoogle Scholar
  51. Urban M, Daniels S, Mott E, Hammond-Kosack K (2002) Arabidopsis is susceptible to the cereal ear blight fungal pathogens Fusarium graminearum and Fusarium culmorum. Plant J 32:961–973CrossRefPubMedGoogle Scholar
  52. Valette-Collet O, Cimerman A, Reignault P, Levis C, Boccara M (2003) Disruption of Botrytis cinerea pectin methylesterase gene Bcpme1 reduces virulence on several host plants. Mol Plant Microbe In 16:360–367CrossRefGoogle Scholar
  53. Van de Veen P, Flipphi MJA, Voragen AGJ, Visser J (1991) Induction, purification and characterisation of arabinases produced by Aspergillus niger. Arch Microbiol 157:23–28PubMedCrossRefGoogle Scholar
  54. Ventelon-Debout M, Delalande F, Brizard J-P, Diemer H, Van Dorsselaer A, Brugidou C (2004) Proteome analysis of cultivar-specific deregulations of Oryza sativa indica and O. sativa japonica cellular suspensions undergoing rice yellow mottle virus infection. Proteomics 4:216–225CrossRefPubMedGoogle Scholar
  55. Wanjiru WM, Zhensheng K, Buchenauer H (2002) Importance of cell wall degrading enzymes produced by Fusarium graminearum during infection of wheat heads. Eur J Plant Pathol 108:803–810CrossRefGoogle Scholar
  56. Wegener S, Ransom RF, Walton JD (1999) A unique eukaryotic β-xylosidase gene from the phytopathogenic fungus Cochliobolus carbonum. Microbiology 145:1089–1095PubMedCrossRefGoogle Scholar
  57. Yakoby N, Beno-Moualem D, Keen NT, Dinoor A, Pines O, Prusky D (2001) Colletotrichum gloeosporioides pelB is an important virulence factor in avocado fruit–fungus interaction. Mol Plant Microbe In 14:988–995CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Vincent Phalip
    • 1
    • 4
  • François Delalande
    • 2
  • Christine Carapito
    • 2
  • Florence Goubet
    • 3
  • Didier Hatsch
    • 1
  • Emmanuelle Leize-Wagner
    • 2
  • Paul Dupree
    • 3
  • Alain Van Dorsselaer
    • 2
  • Jean-Marc Jeltsch
    • 1
  1. 1.UMR 7175—Laboratoire de PhytopathologieUniversité Louis PasteurIllkirchFrance
  2. 2.UMR 7512—Science Analytique et Interactions Ioniques, Moléculaires et BiomoléculairesUniversité Louis PasteurStrasbourgFrance
  3. 3.Department of BiochemistryUniversity of CambridgeCambridgeUK
  4. 4.Ecole Supérieure de Biotechnologie de StrasbourgBoulevard Sébastien BrandtIllkirch-Graffenstaden CedexFrance

Personalised recommendations