Skip to main content
Log in

Cloning, functional expression and characterization of three Phanerochaete chrysosporium endo-1,4-β-xylanases

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Three Phanerochaete chrysosporium endo-1,4-β-xylanase genes were cloned and expressed in Aspergillus niger. Two of these genes, xynA and xynC, encode family 10 glycoside hydrolases, while the third, xynB, codes for a family 11 glycoside hydrolase. All three xylanases possess a type I carbohydrate-binding domain connected to the catalytic domain by a linker region. The three xylanases were purified to homogeneity by weak anion or Avicell column chromatography and subsequently characterized. The XynA, XynB and XynC enzymes have molecular masses of 52, 30 and 50 kDa, respectively. Optimal activity was obtained at pH 4.5 and 70°C with the family 10 xylanases and pH 4.5 and 60°C with the family 11 xylanase. The measured Km when using birchwood xylan as the substrate was 3.71±0.69 mg/ml for XynA and XynC and was 9.96±1.45 mg/ml for XynB. Substrate specificity studies and the products released during the degradation of birchwood xylan suggest differences in catalytic properties between the two family 10 xylanases and the family 11 xylanase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2
Fig. 3a–c
Fig. 4a–d
Fig. 5a, b

Similar content being viewed by others

References

  • Appel RD, Bairoch A, Hochstrasser DF (1994) A new generation of information retrieval tools for biologists: the example of the ExPASy WWW server. Trends Biochem Sci 19:258–260

    Article  CAS  PubMed  Google Scholar 

  • Bennett NA, Ryan J, Biely P, Vrsanska M, Kremnicky L, Macris BJ, Kekos D, Christakopoulos P, Katapodis P, Claeyssens M, Nerinckx W, Ntauma P, Bhat MK (1998) Biochemical and catalytic properties of an endoxylanase purified from the culture filtrate of Thermomyces lanuginosus ATCC 46882. Carbohydr Res 306:445–455

    Article  CAS  PubMed  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  Google Scholar 

  • Biely P, Kratky Z, Vrsanska M (1981) Substrate-binding site of endo-1,4-beta-xylanase of the yeast Cryptococcus albidus. Eur J Biochem 119:559–564

    CAS  PubMed  Google Scholar 

  • Biely P, Vrsanska M, Tenkanen M, Kluepfel D (1997) Endo-beta-1,4-xylanase families: differences in catalytic properties. J Biotechnol 57:151–166

    Article  CAS  PubMed  Google Scholar 

  • Black GW, Rixon JE, Clarke JH, Hazlewood GP, Theodorou MK, Morris P, Gilbert HJ (1996) Evidence that linker sequences and cellulose-binding domains enhance the activity of hemicellulases against complex substrates. Biochem J 15:515–520

    Google Scholar 

  • Blanco A, Diaz P, Zueco J, Parascandola P, Javier Pastor FI (1999) A multidomain xylanase from a Bacillus sp. with a region homologous to thermostabilizing domains of thermophilic enzymes. Microbiology 145:2163–2170

    CAS  PubMed  Google Scholar 

  • Burdsall HH Jr (1969) Stephanocysts: unique structures in the Basidiomycetes. Mycologia 61:915–923

    PubMed  Google Scholar 

  • Carrard G, Koivula A, Soderlund H, Beguin P (2000) Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc Natl Acad Sci USA 97:10342–10347

    Article  CAS  PubMed  Google Scholar 

  • Castanares A, Hay AJ, Gordon AH, McCrae SI, Wood TM (1995) d-xylan-degrading enzyme system from the fungus Phanerochaete chrysosporium: isolation and partial characterisation of an alpha-(4-O-methyl)-d-glucuronidase. J Biotechnol 43:183–194

    Article  CAS  PubMed  Google Scholar 

  • Chinen I, Oouchi K, Tamaki H, Fukuda N (1982) Purification and properties of thermostable beta-xylosidase from immature stalks of Saccharum officinarum L (sugar cane). J Biochem (Tokyo) 92:1873–1881

    CAS  Google Scholar 

  • Clarke JH, Rixon JE, Ciruela A, Gilbert HJ, Hazlewood GP (1997) Family-10 and family-11 xylanases differ in their capacity to enhance the bleachability of hardwood and softwood paper pulps. Appl Microbiol Biotechnol 48:177–183

    Article  CAS  PubMed  Google Scholar 

  • Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859

    CAS  PubMed  Google Scholar 

  • Debets AJM, Bos CJ (1986) Isolation of small protoplasts from Aspergillus niger. Fungal Genet Newsl 33:24

    Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modelling. Electrophoresis 18:2714–2723

    CAS  PubMed  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino-acid sequence similarities. Biochem J 280:309–316

    CAS  PubMed  Google Scholar 

  • Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino-acid sequence similarities. Biochem J 293:781–788

    CAS  PubMed  Google Scholar 

  • Henrissat B, Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316:695–696

    PubMed  Google Scholar 

  • Jacobs A, Larsson PT, Dahlman O (2001) Distribution of uronic acids in xylans from various species of soft- and hardwood as determined by MALDI mass spectrometry. Biomacromolecules 2:979–990

    Article  CAS  PubMed  Google Scholar 

  • Jeffries TW (1996) Biochemistry and genetics of microbial xylanases. Curr Opin Biotechnol 7:337–342

    Article  CAS  PubMed  Google Scholar 

  • Johnson TM, Li JK (1991) Heterologous expression and characterization of an active lignin peroxidase from Phanerochaete chrysosporium using recombinant baculovirus. Arch Biochem Biophys 291:371–378

    CAS  PubMed  Google Scholar 

  • Kanda T, Amano Y, Nisizawa K (1985) Purification and properties of two endo-1,4-beta-xylanases from Irpex lacteus (Polyporus tulipiferae). J Biochem (Tokyo) 98:1545–1554

    CAS  Google Scholar 

  • Käfer E (1977) Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Adv Genet 19:33–131

    PubMed  Google Scholar 

  • Kosugi A, Murashima K, Doi RH (2002) Xylanase and acetyl xylan esterase activities of XynA, a key subunit of the Clostridium cellulovorans cellulosome for xylan degradation. Appl Environ Microbiol 68:6399–6402

    Article  CAS  PubMed  Google Scholar 

  • Krengel U, Dijkstra BW (1996) Three-dimensional structure of Endo-1,4-beta-xylanase I from Aspergillus niger: molecular basis for its low pH optimum. J Mol Biol 263:70–78

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411–456

    Article  CAS  PubMed  Google Scholar 

  • Liab K, Azadi P, Collins R, Tolan J, Kim JS, Eriksson KL (2000) Relationships between activities of xylanases and xylan structures. Enzyme Microbiol Technol 27:89–94

    Article  CAS  Google Scholar 

  • Lin J, Ndlovu LM, Singh S, Pillay B (1999) Purification and biochemical characteristics of beta-d-xylanase from a thermophilic fungus, Thermomyces lanuginosus SSBP. Biotechnol Appl Biochem 30:73–79

    CAS  PubMed  Google Scholar 

  • Mattinen ML, Kontteli M, Kerovuo J, Linder M, Annila A, Lindeberg G, Reinikainen T, Drakenberg T (1997) Three-dimensional structures of three engineered cellulose-binding domains of cellobiohydrolase I from Trichoderma reesei. Protein Sci 6:294–303

    CAS  PubMed  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, Heijne G von (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  CAS  Google Scholar 

  • Panbangred W, Kondo T, Negoro S, Shinmyo A, Okada H (1983) Molecular cloning of the genes for xylan degradation of Bacillus pumilus and their expression in Escherichia coli. Mol Gen Genet 192:335–341

    CAS  PubMed  Google Scholar 

  • Panbangred W, Kawaguchi O, Tomita T, Shinmyo A, Okada H (1984) Isolation of two beta-xylosidase genes of Bacillus pumilus and comparison of their gene products. Eur J Biochem 138:267–273

    CAS  PubMed  Google Scholar 

  • Peitsch MC (1995) Protein modeling by e-mail. Bio/Technology 13:658–666

    CAS  Google Scholar 

  • Reen FJ, Murray PG, Tuohy MG (2003) Molecular characterisation and expression analysis of the first hemicellulase gene (bxl1) encoding beta-xylosidase from the thermophilic fungus Talaromyces emersonii. Biochem Biophys Res Commun 305:579–585

    Article  CAS  PubMed  Google Scholar 

  • Reid ID, Seifert KA (1980) Lignin degradation by Phanerochaete chrysosporium in hyperbaric oxygen. Can J Microbiol 26:1168–1171

    CAS  PubMed  Google Scholar 

  • Reinikainen T, Ruohonen L, Nevanen T, Laaksonen L, Kraulis P, Jones TA, Knowles JK, Teeri TT (1992) Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrolase I. Proteins 14:475–482

    CAS  PubMed  Google Scholar 

  • Rodionova NA, Tavobilov IM, Bezborodov AM (1983) beta-Xylosidase from Aspergillus niger 15:purification and properties. J Appl Biochem 5:300–312

    CAS  PubMed  Google Scholar 

  • Saha BC (2001) Purification and characterization of an extracellular beta-xylosidase from a newly isolated Fusarium verticillioides. J Ind Microbiol Biotechnol 27:241–245

    Article  CAS  PubMed  Google Scholar 

  • Schmidt A, Schlacher A, Steiner W, Schwab H, Kratky C (1998) Structure of the xylanase from Penicillium simplicissimum. Protein Sci 7:2081–2088

    CAS  PubMed  Google Scholar 

  • Schneider H, Barth W, Bohme HJ (1996) Cloning and characterization of another lignin peroxidase gene from the white-rot fungus Phanerochaete chrysosporium. Biol Chem Hoppe Seyler 377:399–402

    CAS  PubMed  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  CAS  PubMed  Google Scholar 

  • Sengupta S, Jana ML, Sengupta D, Naskar AK (2000) A note on the estimation of microbial glycosidase activities by dinitrosalicylic acid reagent. Appl Microbiol Biotechnol 53:732–735

    Article  CAS  PubMed  Google Scholar 

  • Shao W, Wiegel J (1992) Purification and characterization of a thermostable beta-xylosidase from Thermoanaerobacter ethanolicus. J Bacteriol 174:5848–5853

    CAS  PubMed  Google Scholar 

  • Teleman A, Tenkanen M, Jacobs A, Dahlman O (2002) Characterization of O-acetyl-(4-O-methylglucurono)xylan isolated from birch and beech. Carbohydr Res 337:373–377

    Article  CAS  PubMed  Google Scholar 

  • Vrsanska M, Gorbacheva IV, Kratky Z, Biely P (1982) Reaction pathways of substrate degradation by an acidic endo-1,4-beta-xylanase of Aspergillus niger. Biochim Biophys Acta 704:114–122

    CAS  PubMed  Google Scholar 

  • Wernars K, Goosen T, Wennekes BM, Swart K, van den Hondel CA, van den Broek HW (1987) Cotransformation of Aspergillus nidulans: a tool for replacing fungal genes. Mol Gen Genet 209:71–77

    CAS  PubMed  Google Scholar 

  • Whitwam RE, Gazarian IG, Tien M (1995) Expression of fungal Mn peroxidase in E. coli and refolding to yield active enzyme. Biochem Biophys Res Commun 216:1013–1017

    Article  CAS  PubMed  Google Scholar 

  • Wu SS, Suen DF, Chang HC, Huang AH (2002) Maize tapetum xylanase is synthesized as a precursor, processed and activated by a serine protease, and deposited on the pollen. J Biol Chem 277:49055–49064

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Ohira T, Igarashi K, Nagasawa H, Aida K, Hallberg BM, Divne C, Nishino T, Samejima M (2001) Production and characterization of recombinant Phanerochaete chrysosporium cellobiose dehydrogenase in the methylotrophic yeast Pichia pastoris. Biosci Biotechnol Biochem 65:2050–2057

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Cullen for providing P. chrysosporium strain RP78, Dr. Bos for kindly providing A. niger strain N593 and Dr. Li for his expert assistance with mass spectrometry. This work was supported by NSERC Strategic and Genome Quebec/Canada grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reginald K. Storms.

Additional information

Communicated by U. Kück

Rights and permissions

Reprints and permissions

About this article

Cite this article

Decelle, B., Tsang, A. & Storms, R.K. Cloning, functional expression and characterization of three Phanerochaete chrysosporium endo-1,4-β-xylanases. Curr Genet 46, 166–175 (2004). https://doi.org/10.1007/s00294-004-0520-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-004-0520-x

Keywords

Navigation