Skip to main content
Log in

The yeast Pho80–Pho85 cyclin–CDK complex has multiple substrates

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The Pho85–Pho80 cyclin–CDK (cyclin-dependent protein kinase) complex of Saccharomyces cerevisiae functions as a key regulator of the phosphate-repressible acid phosphatase system. We have further characterized the Pho85–Pho80 kinase complex and identified the Pho80 cyclin subunit and the Pho81 CDK inhibitor as substrates of the Pho85 protein kinase. The phosphorylation sites within Pho80 have been identified at Ser234 and Ser267. Of the two sites, phosphorylation of Ser234 is required for Pho80 function, to form an active kinase complex and repress acid phosphatase expression. Evidence suggests that the activity of Pho81 is regulated by a post-translational modification and therefore that Pho85-mediated phosphorylation of Pho81 may alter its ability to function as a CDK inhibitor. Thus, the control of acid phosphatase expression involves the phosphorylation of several of the regulatory components of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2a, b
Fig. 3
Fig. 4a, b
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aebersold RH, Leavitt J, Saavedra RA, Hood LE, Kent SB (1987) Internal amino acid sequence analysis of proteins separated by one- or two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. Proc Natl Acad Sci USA 84:6970–6974

    CAS  PubMed  Google Scholar 

  • Boyle J, Blackwell J (1991) Use of polymerase chain reaction to detect latent channel catfish virus. Am J Vet Res 52:1965–1968

    CAS  PubMed  Google Scholar 

  • Carroll AS, O’Shea EK (2002) Pho85 and signaling environmental conditions. Trends Biochem Sci 27:87–93

    Article  CAS  PubMed  Google Scholar 

  • Ceccarelli E, Mann C (2001) A Cdc28 mutant uncouples G1 cyclin phosphorylation and ubiquitination from G1 cyclin proteolysis. J Biol Chem 276:41725–41732

    Article  CAS  PubMed  Google Scholar 

  • Coche T, Prozzi D, Legrain M, Hilger F, Vandenhaute J (1990) Nucleotide sequence of the PHO81 gene involved in the regulation of the repressible acid phosphatase gene in Saccharomyces cerevisiae. Nucleic Acids Res 18:2176

    CAS  PubMed  Google Scholar 

  • Creasy CL, Madden SL, Bergman LW (1993) Molecular analysis of the PHO81 gene of Saccharomyces cerevisiae. Nucleic Acids Res 21:1975–1982

    CAS  PubMed  Google Scholar 

  • Deshaies RJ, Chau V, Kirschner M (1995) Ubiquitination of the G1 cyclin Cln2p by a Cdc34p-dependent pathway. EMBO J 14:303–312

    CAS  PubMed  Google Scholar 

  • Espinoza FH, Ogas J, Herskowitz I, Morgan DO (1994) Cell cycle control by a complex of the cyclin HCS26 (PCL1) and the kinase PHO85. Science 266:1388–1391

    CAS  PubMed  Google Scholar 

  • Fesquet D, Labbe JC, Derancourt J, Capony JP, Galas S, Girard F, Lorca T, Shuttleworth J, Doree M, Cavadore JC (1993) The MO15 gene encodes the catalytic subunit of a protein kinase that activates cdc2 and other cyclin–dependent kinases (CDKs) through phosphorylation of Thr161 and its homologues. EMBO J 12:3111–3121

    CAS  PubMed  Google Scholar 

  • Gartner A, Jovanovic A, Jeoung DI, Bourlat S, Cross FR, Ammerer G (1998) Pheromone-dependent G1 cell cycle arrest requires Far1 phosphorylation, but may not involve inhibition of Cdc28-Cln2 kinase, in vivo. Mol Cell Biol 18:3681–3691

    CAS  PubMed  Google Scholar 

  • Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96

    CAS  PubMed  Google Scholar 

  • Henchoz S, Chi Y, Catarin B, Herskowitz I, Deshaies RJ, Peter M (1997) Phosphorylation- and ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor Far1p in budding yeast. Genes Dev 11:3046–3060

    CAS  PubMed  Google Scholar 

  • Huang D, Moffat J, Wilson WA, Moore L, Cheng C, Roach PJ, Andrews B (1998) Cyclin partners determine Pho85 protein kinase substrate specificity in vitro and in vivo: control of glycogen biosynthesis by Pcl8 and Pcl10. Mol Cell Biol 18:3289–3299

    CAS  PubMed  Google Scholar 

  • Izumi T, Maller JL (1991) Phosphorylation of Xenopus cyclins B1 and B2 is not required for cell cycle transitions. Mol Cell Biol 11:3860–3867

    CAS  PubMed  Google Scholar 

  • Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, Massague J, Pavletich NP (1995) Mechanism of CDK activation revealed by the structure of a cyclinA–CDK2 complex. Nature 376:313–320

    Article  CAS  PubMed  Google Scholar 

  • Kaffman A, Herskowitz I, Tjian R, O’Shea EK (1994) Phosphorylation of the transcription factor PHO4 by a cyclin–CDK complex, PHO80–PHO85. Science 263:1153–1156

    CAS  PubMed  Google Scholar 

  • Kaffman A, Rank NM, O’Neill EM, Huang LS, O’Shea EK (1998) The receptor Msn5 exports the phosphorylated transcription factor Pho4 out of the nucleus. Nature 396:482–486

    CAS  PubMed  Google Scholar 

  • Komeili A, O’Shea EK (1999) Roles of phosphorylation sites in regulating activity of the transcription factor Pho4. Science 284:977–980

    Article  CAS  PubMed  Google Scholar 

  • Lanker S, Valdivieso MH, Wittenberg C (1996) Rapid degradation of the G1 cyclin Cln2 induced by CDK-dependent phosphorylation. Science 271:1597–1601

    CAS  PubMed  Google Scholar 

  • Lemire JM, Willcocks T, Halvorson HO, Bostian KA (1985) Regulation of repressible acid phosphatase gene transcription in Saccharomyces cerevisiae. Mol Cell Biol 5:2131–2141

    CAS  PubMed  Google Scholar 

  • Li J, Meyer AN, Donoghue DJ (1995) Requirement for phosphorylation of cyclin B1 for Xenopus oocyte maturation. Mol Biol Cell 6:1111–1124

    CAS  PubMed  Google Scholar 

  • Luscher B, Kuenzel EA, Krebs EG, Eisenman RN (1989) Myc oncoproteins are phosphorylated by casein kinase II. EMBO J 8:1111–1119

    CAS  PubMed  Google Scholar 

  • Madden SL, Creasy CL, Srinivas V, Fawcett W, Bergman LW (1988) Structure and expression of the PHO80 gene of Saccharomyces cerevisiae. Nucleic Acids Res 16:2625–2637

    CAS  PubMed  Google Scholar 

  • Madden SL, Johnson DL, Bergman LW (1990) Molecular and expression analysis of the negative regulators involved in the transcriptional regulation of acid phosphatase production in Saccharomyces cerevisiae. Mol Cell Biol 10:5950–5957

    CAS  PubMed  Google Scholar 

  • Marcote MJ, Knighton DR, Basi G, Sowadski JM, Brambilla P, Draetta G, Taylor SS (1993) A three-dimensional model of the Cdc2 protein kinase: localization of cyclin- and Suc1-binding regions and phosphorylation sites. Mol Cell Biol 13:5122–5131

    CAS  PubMed  Google Scholar 

  • Measday V, Moore L, Ogas J, Tyers M, Andrews B (1994) The PCL2 (ORFD)–PHO85 cyclin-dependent kinase complex: a cell cycle regulator in yeast. Science 266:1391–1395

    CAS  PubMed  Google Scholar 

  • Measday V, Moore L, Retnakaran R, Lee J, Donoviel M, Neiman AM, Andrews B (1997) A family of cyclin-like proteins that interact with the Pho85 cyclin-dependent kinase. Mol Cell Biol 17:1212–1223

    CAS  PubMed  Google Scholar 

  • Meijer L, Arion D, Golsteyn R, Pines J, Brizuela L, Hunt T, Beach D (1989) Cyclin is a component of the sea urchin egg M-phase specific histone H1 kinase. EMBO J 8:2275–2282

    CAS  PubMed  Google Scholar 

  • Mendenhall MD (1993) An inhibitor of p34CDC28 protein kinase activity from Saccharomyces cerevisiae. Science 259:216–219

    CAS  PubMed  Google Scholar 

  • Minshull J, Golsteyn R, Hill CS, Hunt T (1990) The A- and B-type cyclin associated cdc2 kinases in Xenopus turn on and off at different times in the cell cycle. EMBO J 9:2865–2875

    CAS  PubMed  Google Scholar 

  • Moffat J, Huang D, Andrews B (2000) Functions of Pho85 cyclin-dependent kinases in budding yeast. Prog Cell Cycle Res 4:97–106

    CAS  PubMed  Google Scholar 

  • Morgan DO (1995) Principles of CDK regulation. Nature 374:131–134

    CAS  PubMed  Google Scholar 

  • Nicolson TA, Weisman LS, Payne GS, Wickner WT (1995) A truncated form of the Pho80 cyclin redirects the Pho85 kinase to disrupt vacuole inheritance in S. cerevisiae. J Cell Biol 130:835–845

    CAS  PubMed  Google Scholar 

  • O’Neill EM, Kaffman A, Jolly ER, O’Shea EK (1996) Regulation of PHO4 nuclear localization by the PHO80–PHO85 cyclin–CDK complex. Science 271:209–212

    CAS  PubMed  Google Scholar 

  • Peeper DS, Parker LL, Ewen ME, Toebes M, Hall FL, Xu M, Zantema A, van der Eb AJ, Piwnica-Worms H (1993) A- and B-type cyclins differentially modulate substrate specificity of cyclin–CDK complexes. EMBO J 12:1947–1954

    CAS  PubMed  Google Scholar 

  • Peter M, Gartner A, Horecka J, Ammerer G, Herskowitz I (1993) FAR1 links the signal transduction pathway to the cell cycle machinery in yeast. Cell 73:747–760

    CAS  PubMed  Google Scholar 

  • Pines J, Hunter T (1989) Isolation of a human cyclin cDNA: evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2. Cell 58:833–846

    CAS  PubMed  Google Scholar 

  • Rogers S, Wells R, Rechsteiner M (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234:364–368

    CAS  PubMed  Google Scholar 

  • Salama SR, Hendricks KB, Thorner J (1994) G1 cyclin degradation: the PEST motif of yeast Cln2 is necessary, but not sufficient, for rapid protein turnover. Mol Cell Biol 14:7953–7966

    CAS  PubMed  Google Scholar 

  • Santos RC, Waters NC, Creasy CL, Bergman LW (1995) Structure–function relationships of the yeast cyclin–dependent kinase Pho85. Mol Cell Biol 15:5482–5491

    CAS  PubMed  Google Scholar 

  • Schneider KR, Smith RL, O’Shea EK (1994) Phosphate-regulated inactivation of the kinase PHO80–PHO85 by the CDK inhibitor PHO81. Science 266:122–126

    CAS  PubMed  Google Scholar 

  • Schwob E, Bohm T, Mendenhall MD, Nasmyth K (1994) The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 79:233–244

    CAS  PubMed  Google Scholar 

  • Sengstag C, Hinnen A (1988) A 28-bp segment of the Saccharomyces cerevisiae PHO5 upstream activator sequence confers phosphate control to the CYC1-lacZ gene fusion. Gene 67:223–228

    Article  CAS  PubMed  Google Scholar 

  • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    CAS  PubMed  Google Scholar 

  • Stewart E, Kobayashi H, Harrison D, Hunt T (1994) Destruction of Xenopus cyclins A and B2, but not B1, requires binding to p34cdc2. EMBO J 13:584–594

    CAS  PubMed  Google Scholar 

  • Surana U, Robitsch H, Price C, Schuster T, Fitch I, Futcher AB, Nasmyth K (1991) The role of CDC28 and cyclins during mitosis in the budding yeast S. cerevisiae. Cell 65:145–161

    CAS  PubMed  Google Scholar 

  • Tan YS, Morcos PA, Cannon JF (2003) Pho85 phosphorylates the Glc7 protein phosphatase regulator Glc8 in vivo. J Biol Chem 278:147–153

    Article  CAS  PubMed  Google Scholar 

  • Timblin BK, Tatchell K, Bergman LW (1996) Deletion of the gene encoding the cyclin-dependent protein kinase Pho85 alters glycogen metabolism in Saccharomyces cerevisiae. Genetics 143:57–66

    CAS  PubMed  Google Scholar 

  • Toh-e A, Tanaka K, Uesono Y, Wickner RB (1988) PHO85, a negative regulator of the PHO system, is a homolog of the protein kinase gene, CDC28, of Saccharomyces cerevisiae. Mol Gen Genet 214:162–164

    CAS  PubMed  Google Scholar 

  • Torriani-Gorini A (1987) Phosphate metabolism and cellular regulation in microorganisms. American Society for Microbiology/International Union of Biochemistry, Washington, D.C.

  • Tyers M, Futcher B (1993) Far1 and Fus3 link the mating pheromone signal transduction pathway to three G1-phase Cdc28 kinase complexes. Mol Cell Biol 13:5659–5669

    CAS  PubMed  Google Scholar 

  • Tyers M, Tokiwa G, Nash R, Futcher B (1992) The Cln3-Cdc28 kinase complex of S. cerevisiae is regulated by proteolysis and phosphorylation. EMBO J 11:1773–1784

    CAS  PubMed  Google Scholar 

  • Uesono Y, Tokai M, Tanaka K, Tohe A (1992) Negative regulators of the PHO system of Saccharomyces cerevisiae: characterization of PHO80 and PHO85. Mol Gen Genet 231:426–432

    CAS  PubMed  Google Scholar 

  • Verma R, Annan RS, Huddleston MJ, Carr SA, Reynard G, Deshaies RJ (1997) Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase. Science 278:455–460

    Article  CAS  PubMed  Google Scholar 

  • Vogel K, Horz W, Hinnen A (1989) The two positively acting regulatory proteins PHO2 and PHO4 physically interact with PHO5 upstream activation regions. Mol Cell Biol 9:2050–2057

    CAS  PubMed  Google Scholar 

  • Wang Z, Wilson WA, Fujino MA, Roach PJ (2001) The yeast cyclins Pc16p and Pc17p are involved in the control of glycogen storage by the cyclin-dependent protein kinase Pho85p. FEBS Lett 506:277–280

    Article  CAS  PubMed  Google Scholar 

  • Wolf A, Shaw EW, Nikaido K, Ames GF (1994) The histidine-binding protein undergoes conformational changes in the absence of ligand as analyzed with conformation-specific monoclonal antibodies. J Biol Chem 269:23051–23058

    CAS  PubMed  Google Scholar 

  • Yaglom J, Linskens MH, Sadis S, Rubin DM, Futcher B, Finley D (1995) p34Cdc28-mediated control of Cln3 cyclin degradation. Mol Cell Biol 15:731–741

    CAS  PubMed  Google Scholar 

  • Yoshida K, Ogawa N, Oshima Y (1989) Function of the PHO regulatory genes for repressible acid phosphatase synthesis in Saccharomyces cerevisiae. Mol Gen Genet 217:40–46

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Carole Long and Tom Daly (Drexel University College of Medicine) for preparation of the anti-Pho4 antiserum and Dr. Jonathan Chernoff (Fox Chase Cancer Center, Philadelphia) for assistance with the phosphotryptic peptide maps. This work was supported by grant 5R01GM56465 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence W. Bergman.

Additional information

Communicated by S. Hohmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waters, N.C., Knight, J.P., Creasy, C.L. et al. The yeast Pho80–Pho85 cyclin–CDK complex has multiple substrates. Curr Genet 46, 1–9 (2004). https://doi.org/10.1007/s00294-004-0501-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-004-0501-0

Keywords

Navigation