Skip to main content
Log in

KNQ1, a Kluyveromyces lactis gene encoding a drug efflux permease

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Several transport systems play an important role in conferring multiple drug resistance, presumably due to their catalysis of the energy-dependent extrusion of a large number of structurally and functionally unrelated compounds out of the cells. In the present work, the gene named KNQ1 (encoding Kluyveromyces lactis membrane permease) was cloned by functional complementation of the cycloheximide-hypersensitivity phenotype of the Saccharomyces cerevisiae mutant strain lacking a functional PDR5 gene. The isolated gene exhibited 48.9% identity with the S. cerevisiae ATR1 gene conferring resistance to aminotriazole and 4-nitroquinoline-N-oxide and encoded a protein of 553 amino acids. When present in multicopy, it efficiently complemented the phenotype associated with the Δpdr5 or Δpdr1Δpdr3 mutations in S. cerevisiae. Overexpression of the KNQ1 gene in K. lactis wild-type strains led to resistance against several cytotoxic compounds, like 4-nitroquinoline-N-oxide, 3-aminotriazole, bifonazole and ketoconazole. The gene was assigned to K. lactis chromosome III and its expression was found to be responsive to oxidative stress induced by hydrogen peroxide. Based on the phenotype of homologous and heterologous transformants, we propose that the gene encodes a membrane-associated component of the machinery responsible for decreasing the concentration of several toxic compounds in the cytoplasm of yeast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2
Fig. 3
Fig. 4
Fig. 5a, b

Similar content being viewed by others

References

  • Alarco AM, Balan I, Talibi D, Mainville N, Raymond M (1997) AP1-mediated multidrug resistance in Saccharomyces cerevisiae requires FLR1 encoding a transporter of the major facilitator superfamily. J Biol Chem 272:19304–19313

    Article  CAS  PubMed  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1989) Current protocols in molecular biology. Wiley, New York

  • Balzi E, Chen W, Ulaszewski S, Capieaux E, Goffeau a (1987) The multidrug resistance gene PDR1 from Saccharomyces cerevisiae. J Biol Chem 262:16871–16879

    CAS  PubMed  Google Scholar 

  • Barnett JA, Payne RW, Yarrow D (1990) Yeast: characteristics and identification, 2nd edn. Cambridge University Press, Cambridge

  • Bauer BE, Wolfger H, Kuchler K (1999) Inventory and function of yeast ABC proteins: about sex, stress, pleiotropic drug and heavy metal resistance. Biochim Biophys Acta 1461:217–236

    CAS  PubMed  Google Scholar 

  • Bianchi MM, Tizzani L, Destruelle M, Frontali L, Wesolowski-Louvel M (1996) The ″petite negative″ yeast Kluyveromyces lactis has a single gene expressing pyruvate decarboxylase activity. Mol Microbiol 19:27–36

    CAS  PubMed  Google Scholar 

  • Billard P, Menart S, Blaisonneau J, Bolotin-Fukuhara M, Fukuhara H, Wesolowski-Louvel M (1996) Glucose uptake in Kluyveromyces lactis: role of the HGT1 gene in glucose transport. J Bacteriol 178:5860–5866

    CAS  PubMed  Google Scholar 

  • Billard P, Dumond H, Bolotin-Fukuhara M (1997) Characterization of an AP-1-like transcription factor that mediates an oxidative stress response in Kluyveromyces lactis. Mol Gen Genet 257:62–70

    Article  CAS  PubMed  Google Scholar 

  • Bissinger PH, Kuchler K (1994) Molecular cloning and expression of the S. cerevisiae STS1 gene product. J Biol Chem 269:4180–4186

    CAS  PubMed  Google Scholar 

  • Blaisoneau J, Fukuhara H, Wesolowski-Louvel M (1997) The Kluyveromyces lactis equivalent of casein kinase I is required for the transcription of the gene encoding the low-affinity glucose permease. Mol Gen Genet 253:469–477

    CAS  PubMed  Google Scholar 

  • Bulder CJAE (1964a) Induction of petite mutations and inhibition of synthesis of respiratory enzymes in various yeasts. Antonie Van Leeuwenhoek 30:1–9

    CAS  Google Scholar 

  • Bulder CJAE (1964b) Lethality of the petite mutation in petite-negative yeasts. Antonie Van Leeuwenhoek 30:442–454

    CAS  Google Scholar 

  • Chen XJ (2001) Activity of the Kluyveromyces lactis Pdr5 multidrug transporter is modulated by the Sit4 protein phosphatase. J Bacteriol 183:3939–3948

    CAS  PubMed  Google Scholar 

  • Christianson TW, Sikorski RS, Dante M, Shero JH, Hieter P (1992) Multifunctional yeast high-copy-number shuttle vectors. Gene 110:119–122

    CAS  PubMed  Google Scholar 

  • Coleman ST, Tseng E, Moye-Rowley SW (1997) Saccharomyces cerevisiae basic region-leucine zipper protein regulatory networks converge at the ATR1 structural gene. J Biol Chem 272:23224–23230

    Article  CAS  PubMed  Google Scholar 

  • Cui Z, Shiraki T, Hirata D, Miyakawa T (1998) Yeast gene YRR1, which is required for resistance to 4-nitroquinline-N-oxide, mediates transcriptional activation of the multidrug resistance transporter gene SNQ2. Mol Microbiol 29:1307–1305

    CAS  PubMed  Google Scholar 

  • Decottignies A, Grant AM, Nichols JW, Wet H de, McIntosh DB, Goffeau a (1998) ATPase and multidrug transport activities of the overexpressed yeast ABC protein Yor1p. J Biol Chem 273:12612–12622

    CAS  PubMed  Google Scholar 

  • DeDeken RH (1966) The Crabtree effect: a regulatory system in yeast. J Gen Microbiol 44:149–156

    PubMed  Google Scholar 

  • Delaveau T, Delahodde A, Carvajal E, Subik J, Jacq C (1994) PDR3, a new yeast regulatory gene, is homologous to PDR1 and controls the multidrug resistance phenomenon. Mol Gen Genet 244:501–511

    CAS  PubMed  Google Scholar 

  • Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acid Res 16:6127–6145

    CAS  PubMed  Google Scholar 

  • Ehrenhofer-Murray AE, Keller Seitz MU, Sengstag C (1998) The Sge1 protein of Saccharomyces cerevisiae is a membrane-associated multidrug transporter. Yeast 14: 49–65

    Article  CAS  PubMed  Google Scholar 

  • Felder T, Bogengruber E, Tenreiro S, Ellinger A, Sa-Correia I, Briza P (2002) Dtr1p, a multidrug resistance transporter of the major facilitator superfamily, plays an essential role in spore wall maturation in Saccharomyces cerevisiae. Eukaryot Cell 1:799–810

    Article  CAS  PubMed  Google Scholar 

  • Fernandes L, Rodrigues-Pousada C, Struhl K (1997) Yap, a novel family of eight bZip proteins in Saccharomyces cerevisiae with distinct biological functions. Mol Cell Biol 17:6982–6993

    CAS  PubMed  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    CAS  PubMed  Google Scholar 

  • Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/ss-DNA/PEG procedure. Yeast 11:355–360

    CAS  PubMed  Google Scholar 

  • Goffeau A, Park J, Paulsen IT, Jonniaux JL, Dinh T, Mordant P, Saier MH Jr (1997) Multidrug-resistant transport proteins in yeast: complete inventory and phylogenetic characterization of yeast open reading frames within the major facilitator superfamily. Yeast 13:43–54

    CAS  PubMed  Google Scholar 

  • Gompel-Klein P, Brendel M (1990) Allelism of SNQ1 and ATR1, genes of the yeast Saccharomyces cerevisiae required for controlling sensitivity to 4-nitroquinoline-N-oxide and aminotriazole. Curr Genet 18:93–96

    CAS  PubMed  Google Scholar 

  • Gounalaki N, Thireos G (1994) Yap1p, a yeast transcriptional activator that mediates multidrug resistance, regulates the metabolic stress response. EMBO J 13:4036–4041

    CAS  PubMed  Google Scholar 

  • Heus JJ, Zonneveld BJM, Steensma HY, Berg JAS van den (1990) Centromeric DNA of Kluyveromyces lactis. Curr Genet 18:517–522

    CAS  PubMed  Google Scholar 

  • Hikkel I, Lucau-Danila A, Delaveu T, Marc P, Devaux F, Jacq C (2003) a general strategy to uncover transcription factor properties identifies a new regulator of drug resistance in yeast. J Biol Chem 278:11427–11432

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa S, Driscoll M, Struhl K (1988) ATR1, a Saccharomyces cerevisiae gene encoding a transmembrane protein required for aminotriazole resistance. Mol Cell Biol 8:664–673

    CAS  PubMed  Google Scholar 

  • Kolaczkowska A, Goffeau a (1999) Regulation of pleiotropic drug resistance in yeast. Drug Resist Updates 2:403–414

    CAS  Google Scholar 

  • Nelissen B, Wachter R de, Goffeau A (1997) Classification of all putative permease and other membrane plurispanners of the major facilitator superfamily encoded by the complete genome of Saccharomyces cerevisiae. FEMS Microbiol Rev 21:113–134

    CAS  Google Scholar 

  • Nunes PA, Tenreiro S, Sa-Correira I (2001) Resistance and adaptation to quinidine in Saccharomyces cerevisiae: role of QDR1 (YIL120w), encoding a plasma membrane transporter of the major facilitator superfamily required for multidrug resistance. Antimicrob Agents Chemother 45:1528–1534

    Article  CAS  PubMed  Google Scholar 

  • Paulsen IT, Chen J, Nelson KE, Saier MH Jr (2002) Comparative genomics of microbial drug efflux systems. In: Paulsen IT, Lewis K (eds) Microbial multidrug efflux. Horizon Scientific Press, Wymondham, pp 5–20

  • Prior C, Mammessier P, Fukuhara H, Chen XJ, Wesolowski-Louvel M (1993) The hexokinase gene is required for the transcriptional regulation of the glucose transporter gene RAG1 in Kluyveromyces lactis. Mol Cell Biol 13:3882–3889

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Sánchez M, Iglesias J, Santamaria C, Dominguez A (1993) Transformation of Kluyveromyces lactis by electroporation. Appl Environ Microbiol 59:2087–2092

    Google Scholar 

  • Sanglard D, Odds FC (2002) Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis 2:73–85

    Article  CAS  PubMed  Google Scholar 

  • Sorbo GD, Schoonbeek HJ, De Waard MA (2000) Fungal transporters involved in efflux of natural toxic compounds and fungicides. Fungal Genet Biol 30:1–15

    PubMed  Google Scholar 

  • Stark MJR, Boyd A, Mileham AJ, Romanos MA (1990) The plasmid-encoded killer system of Kluyveromyces lactis: a review. Yeast 6:1–29

    CAS  Google Scholar 

  • Stephen DW, Rivers SL, Jamieson DJ (1995) The role of the YAP1 and YAP2 genes in the regulation of the adaptive oxidative stress responses of Saccharomyces cerevisiae. Mol Microbiol 16:415–423

    PubMed  Google Scholar 

  • Takacova M, Sklenar P, Gbelska Y, Breunig KD, Subik J (2002) Isolation, heterological cloning and sequencing of the RPL28 gene in Kluyveromyces lactis. Curr Genet 42:21–26

    Article  CAS  PubMed  Google Scholar 

  • Tenreiro S, Rosa PC, Viegas CA, Sa-Correia I (2000) Expression of the AZR1 gene (ORF YGR224w), encoding a plasma membrane transporter of the major facilitator superfamily, is required for adaptation to acetic acid and resistance to azoles in Saccharomyces cerevisiae. Yeast 16:1469–1481

    Article  CAS  PubMed  Google Scholar 

  • Tenreiro S, Nunes PA, Viegas CA, Neves MS, Teixera MC, Cabral MG, Sa-Correia I (2002) AQR1 gene (ORF YNL065w) encodes a plasma membrane transporter of the major facilitator superfamily that confers resistance to short-chain monocarboxylic acids and quinidine in Saccharomyces cerevisiae. Biochem Biophys Res Commun 292:741–748

    Article  CAS  PubMed  Google Scholar 

  • Teunissen AWRH, Berg JA van den, Steensma HY (1993) Physical localization of the flocculation gene FLO1 on chromosome I of Saccharomyces cerevisiae. Yeast 9:1–10

    CAS  Google Scholar 

  • Tomitori H, Kashiwagi K, Asakawa T, Kakinuma Y, Michael AJ, Igarashi K (2001) Multiple polyamine transport systems on the vacuolar membrane. Biochem J 353:681–688

    Article  CAS  PubMed  Google Scholar 

  • Valle Matta MA do, Jonniaux JL, Balzi E, Goffeau A, Hazel B van den (2001) Novel target genes of the yeast regulator Pdr1p: a contribution of the TPO1 gene in resistance to quinidine and other drugs. Gene 272:111–119

    Article  PubMed  Google Scholar 

  • Ward AC (1990) Single-step purification of shuttle vectors from yeast for high frequency back-transformation into E. coli. Nucleic Acids Res 18:5319

    CAS  PubMed  Google Scholar 

  • Weirich J, Goffrini P, Kuger P, Ferrero I, Breunig KD (1997) Influence of mutations in hexose-transporter genes on glucose respression in Kluyveromyces lactis. Eur J Biochem 249:248–257

    CAS  PubMed  Google Scholar 

  • Wesolowski-Louvel M, Goffrini P, Ferrero I, Fukuhara H (1992) Glucose transport in the yeast Kluyveromyces lactis. I. Properties of an inducible-low-affinity glucose transporter gene. Mol Gen Genet 33:89–96

    Google Scholar 

  • Wesolowski-Louvel M, Breunig KD, Fukuhara H (1996) Kluyveromyces lactis. In: Wolf K (ed) Non-conventional yeasts in biotechnology. Springer, Berlin Heidelberg New York, pp 139–201

  • Wolfger H, Mammun YM, Kuchler K (2001) Fungal ABC proteins: pleiotropic drug resistance, stress response and cellular detoxification. Res Microbiol 152:375–389

    CAS  PubMed  Google Scholar 

  • Wu A, Wemmie JA, Edgington NP, Goebl M, Guevara JL, Moye-Rowley WS (1993) Yeast bZip proteins mediate pleiotropic drug and metal resistance. J Biol Chem 268:18850–18858

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our thanks are due to R.A. Koistra and Y.H. Steensma for the generous gift of K. lactis chromosomal DNA blots and to Scott Moye-Rowley for the S. cerevisiae SCY2 strain. This work was supported by grants from the Slovak Grant Agency VEGA (1/0019/03), the Science and Technology Assistance Agency (APVT-51-000502), the European Community (QLK2-2001-002377), the Ministry of Education of the Slovak Republic and the Comenius University in Bratislava.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius Subik.

Additional information

Communicated by K. Breunig

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takacova, M., Imrichova, D., Cernicka, J. et al. KNQ1, a Kluyveromyces lactis gene encoding a drug efflux permease. Curr Genet 45, 1–8 (2004). https://doi.org/10.1007/s00294-003-0449-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-003-0449-5

Keywords

Navigation