Skip to main content

Advertisement

Log in

PF-IND: probability algorithm and software for separation of plant and fungal sequences

  • Technical Note
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The separation of plant and fungal sequences in EST pools by bioinformatic methods is difficult because of sequence similarities between plants and fungi, lack of enough sequence information, and the short length of the isolated fragments. An algorithm and software that utilize the differences in codon usage bias to discriminate between plant and fungal sequences are described. The software (PF-IND) includes five pairs of fungi and their host plants that can be used to analyze a large number of related species. Analysis of a sequence provides an arbitrary value that defines the likelihood that a sequence will be a fungal or a plant gene. The software can distinguish between homologous fungal and plant genes and it helps identify the correct reading frame of unknown expressed sequence tags (ESTs) for which BLAST analyses do not provide clear information. Short sequences of 100–150 bp can be analyzed with high confidence. PF-IND analysis of 100 sequences derived from fungal infected plants identified the origin of 94 sequences. Only 66 sequences were identified by a BLASTX analysis of the same 100 ESTs. Overall, PF-IND is a novel bioinformatic tool aimed at assisting the research of fungus–plant interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

References

  • Akashi H (1997) Codon bias evolution in Drosophila. Population genetics of mutation–selection drift. Gene 205:269–278

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen J, Hall B (1982) Codon selection in yeast. J Biol Chem 257:3026–3031

    CAS  PubMed  Google Scholar 

  • Chiapello H, Lisacek F, Caboche M, Henaut A (1998) Codon usage and gene function are related in sequences of Arabidopsis thaliana. Gene 209:GC1–GC38

    Article  CAS  PubMed  Google Scholar 

  • Coghlan A, Wolfe K (2000) Relationship of codon bias to mRNA concentration and protein length in Saccharomyces cerevisiae. Yeast 16:1131–1145

    CAS  PubMed  Google Scholar 

  • Comeron J, Aguade M (1998) An evaluation of measures of synonymous codon usage bias. J Mol Evol 47:268–274

    Google Scholar 

  • Ermolaeva M (2001) Synonymous codon usage in bacteria. Curr Issues Mol Biol 3:91–97

    CAS  PubMed  Google Scholar 

  • Fennoy S, Bailey-Serres J (1993) Synonymous codon usage in Zea mays L. nuclear genes is varied by levels of C- and G-ending codons. Nucleic Acids Res 21:5294–5300

    CAS  PubMed  Google Scholar 

  • Gold S, Garcia-Pedrajas M, Martinez-Espinoza A (2001) New (and used) approaches to the study of fungal pathogenicity. Annu Rev Phytopathol 39:337–365

    Google Scholar 

  • Hill M, Lyon K, Lyon B (1999) Identification of disease response genes expressed in Gossypium hirsutum upon infection with the wilt pathogen Verticillium dahliae. Plant Mol Biol 40:289–296

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Xu R, Wei Y, Goodwin P (1999) Increased expression of a plant actin gene during a biotrophic interaction between round-leaved mallow, Malva pusilla, and Colletotrichum gloeosporioides f. sp. malvae. Planta 209:487–494

    Article  CAS  PubMed  Google Scholar 

  • Kanaya S, Kinouchi M, Abe T, Kudo Y, Yamada Y, Nishi T, Mori H, Ikemura T (2001) Analysis of codon usage diversity of bacterial genes with a self-organizing map (SOM): characterization of horizontally transferred genes with emphasis on the E. coli O157 genome. Gene 276:89–99

    Article  CAS  PubMed  Google Scholar 

  • Karlin S (2001) Detecting anomalous gene clusters and pathogenicity islands in diverse bacterial genomes. Trends Microbiol 9:335–343

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Park J, Kim K, Ko M, Cheong S, Oh B (2002) A thaumatin-like gene in nonclimacteric pepper fruits used as molecular marker in probing disease resistance, ripening, and sugar accumulation. Plant Mol Biol 49:125–135

    Article  CAS  PubMed  Google Scholar 

  • Kruger W, Pritsch C, Chao S, Muehlbauer G (2002) Functional and comparative bioinformatic analysis of expressed genes from wheat spikes infected with Fusarium graminearum. Mol Plant-Microbe Interact 15:445–455

    Google Scholar 

  • Mankel A, Krause K, Kothe E (2002) Identification of a hydrophobin gene that is developmentally regulated in the ectomycorrhizal fungus Tricholoma terreum. Appl Environ Microbiol 68:1408–1413

    Article  CAS  PubMed  Google Scholar 

  • Mazeyrat F, Mouzeyar S, Nicolas P, Tourvieille de Labrouhe D, Ledoigt G (1998) Cloning, sequence and characterization of a sunflower (Helianthus annuus L.) pathogen-induced gene showing sequence homology with auxin-induced genes from plants. Plant Mol Biol 38:899–903

    Article  CAS  PubMed  Google Scholar 

  • Moriyama E, Powell J (1997) Codon usage bias and tRNA abundance in Drosophila. J Mol Evol 45:514–523

    CAS  PubMed  Google Scholar 

  • Moriyama E, Powell J (1998) Gene length and codon usage bias in Drosophila melanogaster, Saccharomyces cerevisiae and Escherichia coli. Nucleic Acids Res 26:3188–3193

    Article  CAS  PubMed  Google Scholar 

  • Moszer I, Rocha E, Danchin A (1999) Codon usage and lateral gene transfer in Bacillus subtilis. Curr Opin Microbiol 2:524–528

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Gojobori T, Ikemura T (2000) Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res 28:292

    CAS  PubMed  Google Scholar 

  • Powell J, Moriyama E (1997) Evolution of codon usage bias in Drosophila. Proc Natl Acad Sci USA 94:7784–7790

    Article  CAS  PubMed  Google Scholar 

  • Seehaus K, Tenhaken R (1998) Cloning of genes by mRNA differential display induced during the hypersensitive reaction of soybean after inoculation with Pseudomonas syringae pv. glycinea. Plant Mol Biol 38:1225–1234

    CAS  PubMed  Google Scholar 

  • Sharp P, Li W (1987) The codon adaptation index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281–1395

    CAS  PubMed  Google Scholar 

  • Silke J (1997) The majority of long non-stop reading frames on the antisense strand can be explained by biased codon usage. Gene 194:143–155

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Badger J, Kearney P, Mo L (2001) Analysis of codon usage patterns of bacterial genomes using the self-organizing map. Mol Biol Evol 18:792–800

    CAS  PubMed  Google Scholar 

  • Wang J, Zhang C (2001) Analysis of the codon usage pattern in the Vibrio cholerae genome. J Biomol Struct Dyn 18:872–880

    CAS  PubMed  Google Scholar 

  • Wang T, Cheng W, Lee B (1998) A simple program to calculate codon bias index. Mol Biotechnol 10:103–106

    CAS  PubMed  Google Scholar 

  • Wright F (1990) The 'effective number of codons' used in a gene. Gene 87:23–29

    CAS  PubMed  Google Scholar 

  • Xu J, Xue C (2002) Time for a blast: genomics of Magnaporthe grisea. Mol Plant Pathol 3:173–176

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by The Israeli Ministry of Sciences, Grant 1336.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sharon.

Additional information

Communicated by S. Hohmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maor, R., Kosman, E., Golobinski, R. et al. PF-IND: probability algorithm and software for separation of plant and fungal sequences. Curr Genet 43, 296–302 (2003). https://doi.org/10.1007/s00294-003-0394-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-003-0394-3

Keywords

Navigation