Skip to main content
Log in

New insights in the regulation of the afp gene encoding the antifungal protein of Aspergillus giganteus

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

An Erratum to this article was published on 05 July 2005

Abstract

The antifungal protein (AFP) secreted by the mould Aspergillus giganteus is a small, highly basic polypeptide with antifungal activity. Previous work has shown that transcription of the corresponding afp gene is regulated by ambient pH, being suppressed under acidic and strongly induced under alkaline conditions. This observation suggested that the afp gene is regulated by the wide-domain transcriptional factor PacC. Here, we show that two putative PacC binding sites within the afp promoter, denoted afpP1 and afpP2, are efficiently recognised in vitro by a PacC fusion protein of A. nidulans. In addition, we found that phosphate, which was used as a buffering agent during cultivation, plays an important role in regulating afp expression. AFP production was nearly completely inhibited in the presence of external phosphate. The results of Northern analysis indicate that the inhibitory effect of phosphate is mediated at the transcriptional level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Denison SH (2000) pH regulation of gene expression in fungi. Fungal Genet Biol 29:61–71

    Article  PubMed  CAS  Google Scholar 

  • Espeso AE, Peñalva MA (1996) Three binding sites for the Aspergillus nidulans PacC zinc-finger transcription factor are necessary and sufficient for regulation by ambient pH of the isopenicillin N synthase gene promoter. J Biol Chem 271:28825–28830

    Article  PubMed  CAS  Google Scholar 

  • Espeso EA, Tilburn J, Arst HN Jr, Peñalva MA (1993) pH regulation is a major determinant in expression of a fungal penicillin biosynthetic gene. EMBO J 12:3947–3956

    PubMed  CAS  Google Scholar 

  • Espeso EA, Tilburn J, Sanchez-Pulido L, Brown CV, Valencia A, Arst HN Jr, Peñalva MA (1997) Specific DNA recognition by the Aspergillus nidulans three zinc finger transcription factor PacC. J Mol Biol 274:466–480

    Article  PubMed  CAS  Google Scholar 

  • Espeso EA, Roncal T, Diez E, Rainbow L, Bignell E, Álvaro J, Suârez T, Denison SH, Tilburn J, Arst HN Jr, Peñalva MA (2000) On how a transcription factor can avoid its proteolytic activation in the absence of signal transduction. EMBO J 19:719–728

    Article  PubMed  CAS  Google Scholar 

  • Hanel F, Grafe U, Roth M, Bormann EJ, Krebs D (1985) Influence of inorganic phosphate on the lipid synthesis of a phosphate-deregulated mutant of Streptomyces noursei. J Basic Microbiol 25:323–325

    Google Scholar 

  • Kronstad J, De Maria A, Funnell D, Laidlaw RD, Lee N, De Sa MM, Ramesh M (1998) Signalling via cAMP in fungi: interconnections with mitogen-activated protein kinase pathways. Arch Microbiol 170:395–404

    Article  PubMed  CAS  Google Scholar 

  • Lacadena J, Martinez del Pozo A, Gasset M, Patino B, Campos-Olivas R, Vazquez C, Martinez-Ruiz A, Mancheno JM, Onaderra M, Gavilanes JG (1995) Characterization of the antifungal protein secreted by the mould Aspergillus giganteus. Arch Biochem Biophys 324:273–281

    Article  PubMed  CAS  Google Scholar 

  • Lengeler KB, Davidson RC, D’Souza C, Harashima T, Shen WC, Wang P, Pan X, Waugh M, Heitman J (2000) Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64:746–785

    Article  PubMed  CAS  Google Scholar 

  • Meyer V, Wedde M, Stahl U (2002) Transcriptional regulation of the Antifungal Protein in Aspergillus giganteus. Mol Genet Genomics 266:747–757

    Article  PubMed  CAS  Google Scholar 

  • Miller H (1987) Practical aspects of preparing phage and plasmid DNA: Growth, maintenance and storage of bacteria and bacteriophage. Methods Enzymol 152:145–170

    Article  PubMed  CAS  Google Scholar 

  • Mingot JM, Tilburn J, Diez E, Bignell E, Orejas M, Widdick DA, Sarkar S, Brown CV, Caddick MX, Espeso EA, Arst HN Jr, Peñalva MA (1999) Specificity determinants of proteolytic processing of Aspergillus PacC transcription factor are remote from the processing site, and processing occurs in yeast if pH signalling is bypassed. Mol Cell Biol 19:1390–1400

    PubMed  CAS  Google Scholar 

  • Olson BH, Goerner GL (1965) Alpha Sarcin, a new antitumor agent. Isolation, purification, chemical composition and the identity of a new amino acid. Appl Microbiol 13:314–321

    PubMed  CAS  Google Scholar 

  • Orejas M, Espeso EA, Tilburn J, Sarkar S, Arst HN Jr, Peñalva MA (1995) Activation of the Aspergillus PacC transcription factor in response to alkaline ambient pH requires proteolysis of the carboxy-terminal moiety. Genes Dev 9:1622–1632

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Schmitt E, Kempken R, Kück U (2001) Functional analysis of promoter sequences of cephalosporin biosynthesis from Acremonium chrysogenum: specific DNA-protein interactions and characterization of the transcription factor PACC. Mol Genet Genomics 265:508–518

    Article  PubMed  CAS  Google Scholar 

  • Suárez T, Peñalva MA (1996) Characterization of a Penicillium chrysogenum gene encoding a PacC transcription factor and its binding sites in the divergent pcbAB-pcbC promoter of the penicillin biosynthetic cluster. Mol Microbiol 20:529–540

    Article  PubMed  Google Scholar 

  • Tilburn J, Sarkar S, Widdick DA, Espeso EA, Orejas M, Mungroo J, Peñalva MA, Arst HN Jr (1995) The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J 14:779–790

    PubMed  CAS  Google Scholar 

  • Weinberg D (1978) Secondary metabolism: regulation by phosphate and trace elements. Folia Microbiol (Prague) 23:496–504

    Article  CAS  Google Scholar 

  • Wenz P, Schwank S, Hoja U, Schüller HJ (2001) A downstream regulatory element located within the coding sequence mediates autoregulated expression of the yeast fatty acid synthase gene FAS2 by the FAS1 gene product. Nucleic Acids Res 29:4625–4632

    Article  PubMed  CAS  Google Scholar 

  • Wnendt S, Ulbrich N, Stahl U (1994) Molecular cloning, sequence analysis and expression of the gene encoding an antifungal protein from Aspergillus giganteus. Curr Genet 25:519–523

    Article  PubMed  CAS  Google Scholar 

  • Yelton MM, Hamer JE, Timberlake WE (1984) Transformation of Aspergillus nidulans by using a trpC plasmid. Proc Natl Acad Sci USA 81:1470–1474

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Wolfe S, Demain AL (1988) Phosphate repressible and inhibitable β-lactam synthetases in Cephalosporium acremonium strain C-10. Appl Microbiol Biotechnol 29:242–247

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Meyer.

Additional information

Communicated by U. Kück

Published online: 18 September 2002

An erratum to this article is available at http://dx.doi.org/10.1007/s00294-005-0567-3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, V., Stahl, U. New insights in the regulation of the afp gene encoding the antifungal protein of Aspergillus giganteus . Curr Genet 42, 36–42 (2002). https://doi.org/10.1007/s00294-002-0324-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-002-0324-9

Keywords

Navigation