Skip to main content
Log in

IL-2/IL-2R signaling and IL-2Rα-targeted therapy in anaplastic large cell lymphoma

IL-2/IL-2R-Signalübertragung und gezielte IL-2Rα-Therapie bei anaplastischem großzelligem Lymphom

  • Referate: Preisträgerinnen und Preisträger – Novartis-Preis der DGP
  • Published:
Die Pathologie Aims and scope Submit manuscript

Abstract

Anaplastic large cell lymphoma (ALCL) is a CD30-positive non-Hodgkin’s T‑cell lymphoma. Despite the implementation of CD30 antibody–drug conjugate-targeted therapy into front-line treatment regimens, the prognosis of some subtypes of the disease remains unsatisfactory. In the relapsed/refractory setting, effective second-line treatment options are still lacking. However, it has been reported that blockade of direct downstream targets of activator protein‑1 (AP-1) transcription factors, which are highly dysregulated in ALCL, results in complete and sustained remission in late-stage relapsed/refractory anaplastic lymphoma kinase (ALK)-positive ALCL patients. Moreover, it has been identified that involvement of the BATF3/AP‑1 module promotes lymphomagenesis via oncogenic BATF3/IL-2/IL-2R signaling through hyperphosphorylation of ERK1/2, STAT1, and STAT5 in ALCL cells regardless of their ALK status. Therefore, targeting BATF3/IL-2/IL-2R signaling may represent a novel therapeutic alternative for ALCL patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Vose J, Armitage J, Weisenburger D et al (2008) International peripheral T‑cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol 26:4124–4130

    Article  Google Scholar 

  2. Greer J, Kinney M, Collins R et al (1991) Clinical features of 31 patients with Ki‑1 anaplastic large-cell lymphoma. J Clin Oncol 9:539–547

    Article  CAS  Google Scholar 

  3. Swerdlow S, Campo E, Harris N et al (2017) WHO classification of tumours of haematopoietic and lymphoid tissues, 4th edn. World Health Organization, Geneva

    Google Scholar 

  4. Garces de los Fayos Alonso I, Liang HC, Turner SD et al (2018) The role of activator protein‑1 (AP-1) family members in CD30-positive lymphomas. Cancers (Basel) 10:E93

    Article  Google Scholar 

  5. Crescenzo R, Abate F, Lasorsa E et al (2015) Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell 27:516–532

    Article  CAS  Google Scholar 

  6. Agnelli L, Mereu E, Pellegrino E et al (2012) Identification of a 3-gene model as a powerful diagnostic tool for the recognition of ALK-negative anaplastic large-cell lymphoma. Blood 120:1274–1281

    Article  CAS  Google Scholar 

  7. Schleussner N, Merkel O, Costanza M et al (2018) The AP-1-BATF and -BATF3 module is essential for growth, survival and TH17/ILC3 skewing of anaplastic large cell lymphoma. Leukemia 32:1994–2007

    Article  CAS  Google Scholar 

  8. Liang HC, Costanza M, Prutsch N et al (2021) Super-enhancer-based identification of a BATF3/IL-2R−module reveals vulnerabilities in anaplastic large cell lymphoma. Nat Commun 12:5577

    Article  CAS  Google Scholar 

  9. Chen J, Zhang Y, Petrus MN et al (2017) Cytokine receptor signaling is required for the survival of ALK-anaplastic large cell lymphoma, even in the presence of JAK1/STAT3 mutations. Proc Natl Acad Sci USA 114:3975–3980

    Article  CAS  Google Scholar 

  10. Lamant L, de Reyniès A, Duplantier M et al (2007) Gene-expression profiling of systemic anaplastic large-cell lymphoma reveals differences based on ALK status and two distinct morphologic ALK+ subtypes. Blood 109:2156–2164

    Article  CAS  Google Scholar 

  11. Iqbal J, Weisenburger DD, Greiner TC et al (2010) Molecular signatures to improve diagnosis in peripheral T‑cell lymphoma and prognostication in angioimmunoblastic T‑cell lymphoma. Blood 115:1026–1036

    Article  CAS  Google Scholar 

  12. Boulland ML, Meignin V, Leroy-Viard K et al (1998) Human interleukin-10 expression in T/natural killer-cell lymphomas: association with anaplastic large cell lymphomas and nasal natural killer-cell lymphomas. Am J Pathol 153:1229–1237

    Article  CAS  Google Scholar 

  13. Bard DJ, Gelebart P, Anand M et al (2008) Aberrant expression of IL-22 receptor 1 and autocrine IL-22 stimulation contribute to tumorigenicity in ALK+ anaplastic large cell lymphoma. Leukemia 22:1595–1603

    Article  CAS  Google Scholar 

  14. Prutsch N, Gurnhofer E, Suske T et al (2019) Dependency on the TYK2/STAT1/MCL1 axis in anaplastic large cell lymphoma. Leukemia 33:696–709

    Article  CAS  Google Scholar 

  15. Prokoph N, Probst N, Lee L et al (2020) IL10RA modulates crizotinib sensitivity in NPM1-ALK-positive anaplastic large cell lymphoma. Blood 136:1657–1669

    Google Scholar 

  16. Couronné L, Scourzic L, Pilati C et al (2013) STAT3 mutations identified in human hematologic neoplasms induce myeloid malignancies in a mouse bone marrow transplantation model. Haematologica 98:1748–1752

    Article  Google Scholar 

  17. Ehrentraut S, Schneider B, Nagel S et al (2016) Th17 cytokine differentiation and loss of plasticity after SOCS1 inactivation in a cutaneous T‑cell lymphoma. Oncotarget 7:34201–34216

    Article  Google Scholar 

  18. Silva DA, Yu S, Ulge UY et al (2019) De novo design of potent and selective mimics of IL‑2 and IL-15. Nature 565:186–191

    Article  CAS  Google Scholar 

  19. Waldmann TA (2015) The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. Cancer Immunol Res 3:219–227

    Article  CAS  Google Scholar 

  20. Zhang Q, Wang HY, Liu X et al (2011) IL-2R common γ‑chain is epigenetically silenced by nucleophosphin-anaplastic lymphoma kinase (NPM-ALK) and acts as a tumor suppressor by targeting NPM-ALK. Proc Natl Acad Sci USA 108:11977–11982

    Article  CAS  Google Scholar 

  21. Pomari E, Basso G, Bresolin S et al (2017) NPM-ALK expression levels identify two distinct subtypes of paediatric anaplastic large cell lymphoma. Leukemia 31:498–501

    Article  CAS  Google Scholar 

  22. Dinarello CA (2007) Historical review of cytokines. Eur J Immunol 37:S34–S45

    Article  CAS  Google Scholar 

  23. Liao W, Lin J‑X, Leonard WJ (2013) Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 38:13–25

    Article  CAS  Google Scholar 

  24. Müller MR, Rao A (2010) NFAT, immunity and cancer: a transcription factor comes of age. Nat Rev Immunol 10:645–656

    Article  Google Scholar 

  25. Lechner MG, Megiel C, Church CH et al (2012) Survival signals and targets for therapy in breast implant-associated ALK-anaplastic large cell lymphoma. Clin Cancer Res 18:4549–4559

    Article  CAS  Google Scholar 

  26. Ito M, Zhao N, Zeng Z et al (2011) Interleukin‑2 functions in anaplastic large cell lymphoma cells through augmentation of extracellular signal-regulated kinases 1/2 activation. Int J Biomed Sci 7:181–190

    CAS  Google Scholar 

  27. Knörr F, Damm-Welk C, Ruf S et al (2018) Blood cytokine concentrations in pediatric patients with anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Haematologica 103:477–485

    Article  Google Scholar 

  28. Lodolce JP, Burkett PR, Koka RM et al (2002) Regulation of lymphoid homeostasis by interleukin-15. Cytokine Growth Factor Rev 13:429–439

    Article  CAS  Google Scholar 

  29. Fehniger TA, Caligiuri MA (2001) Interleukin 15: biology and relevance to human disease. Blood 97:14–32

    Article  CAS  Google Scholar 

  30. Ullrich K, Blumenthal-Barby F, Lamprecht B et al (2015) The IL-15 cytokine system provides growth and survival signals in Hodgkin lymphoma and enhances the inflammatory phenotype of HRS cells. Leukemia 29:1213–1218

    Article  CAS  Google Scholar 

  31. Brugières L, Le Deley MC, Rosolen A et al (2009) Impact of the methotrexate administration dose on the need for intrathecal treatment in children and adolescents with anaplastic large-cell lymphoma: results of a randomized trial of the EICNHL group. J Clin Oncol 27:897–903

    Article  Google Scholar 

  32. Wrobel G, Mauguen A, Rosolen A et al (2011) Safety assessment of intensive induction therapy in childhood anaplastic large cell lymphoma: report of the ALCL99 randomised trial. Pediatr Blood Cancer 56:1071–1077

    Article  Google Scholar 

  33. Younes A, Bartlett NL, Leonard JP et al (2010) Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med 363:1812–1821

    Article  CAS  Google Scholar 

  34. Pro B, Advani R, Brice P et al (2014) Four-year survival data from an ongoing pivotal phase 2 study of brentuximab vedotin in patients with relapsed or refractory systemic anaplastic large cell lymphoma. Blood 124:3095

    Article  Google Scholar 

  35. Richardson N, Kasamon Y, Chen H et al (2019) FDA approval summary: brentuximab vedotin in first-line treatment of peripheral T‑cell lymphoma. Oncologist 24:180–187

    Article  Google Scholar 

  36. Horwitz S, O’Connor OA, Pro B et al (2019) Brentuximab vedotin with chemotherapy for CD30-positive peripheral T‑cell lymphoma (ECHELON-2): a global, double-blind, randomised, phase 3 trial. Lancet 393:229–240

    Article  CAS  Google Scholar 

  37. Attia P, Maker AV, Haworth LR et al (2005) Inability of a fusion protein of IL‑2 and diphtheria toxin (denileukin diftitox, DAB389IL‑2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma. J Immunother 28:582–592

    Article  CAS  Google Scholar 

  38. Lansigan F, Stearns DM, Foss F (2010) Role of denileukin diftitox in the treatment of persistent or recurrent cutaneous T‑cell lymphoma. Cancer Manag Res 2:53–59

    Article  CAS  Google Scholar 

  39. LeMaistre CF, Saleh MN, Kuzel TM et al (1998) Phase I trial of a ligand fusion-protein (DAB389IL-2) in lymphomas expressing the receptor for interleukin‑2. Blood 91:399–405

    CAS  Google Scholar 

  40. Duvic M, Cather J, Maize J, Frankel AE (1998) DAB389IL2 diphtheria fusion toxin produces clinical responses in tumor stage cutaneous T‑cell lymphoma. Am J Hematol 58:87–90

    Article  CAS  Google Scholar 

  41. Prince HM, Duvic M, Martin A et al (2010) Phase III placebo-controlled trial of denileukin diftitox for patients with cutaneous T‑cell lymphoma. J Clin Oncol 28:1870–1877

    Article  CAS  Google Scholar 

  42. Wang Z, Zheng Q, Zhang H et al (2017) Ontak-like human IL‑2 fusion toxin. J Immunol Methods 448:51–58

    Article  CAS  Google Scholar 

  43. Flynn MJ, Zammarchi F, Tyrer PC et al (2016) ADCT-301, a pyrrolobenzodiazepine (PBD) dimer-containing antibody-drug conjugate (ADC) targeting CD25-expressing hematological malignancies. Mol Cancer Ther 15:2709–2721

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan-Chang Liang PhD.

Ethics declarations

Conflict of interest

H.‑C. Liang declares that he has no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies mentioned were in accordance with the ethical standards indicated in each case.

The supplement containing this article is not sponsored by industry.

Additional information

figure qr

Scan QR code & read article online

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, HC. IL-2/IL-2R signaling and IL-2Rα-targeted therapy in anaplastic large cell lymphoma. Pathologie 43 (Suppl 1), 25–30 (2022). https://doi.org/10.1007/s00292-022-01108-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-022-01108-x

Keywords

Navigation