Skip to main content
Log in

Reaktive Lymphadenopathien

Reactive lymphadenopathies

  • Schwerpunkt: Nichtneoplastische Hämatopathologie
  • Published:
Die Pathologie Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Zusammenfassung

Die ca. 600 Lymphknoten des Menschen sind Bestandteil des dezentralen Immunsystems. Die wesentlichen Aufgaben der Lymphknoten bestehen in der Reinigung der Lymphe und der Verteidigung des Gesamtorganismus gegenüber äußeren und inneren Bedrohungen durch Bakterien, Viren und Tumorzellen. Die Histologie der Lymphknoten spiegelt unterschiedliche Strategien des B‑ und T‑Zellsystems, der antigenpräsentierenden Zellen, Makrophagen und Retikulumzellen wider. Dennoch lässt die Kenntnis des histologischen Bildes ohne ergänzende Untersuchungen bisher meist nur Vermutungen auf das auslösende Agens wie Toxoplasmose, Bakterien und Viren zu. In diesem Kapitel wird auf die Beschreibung unterschiedlicher Lymphknoten-Reaktionsformen eingegangen, um zu einem besseren Verständnis von Immunreaktionen und der Abgrenzung zu bösartigen immunologischen Prozessen zu gelangen. Gerade letzteres zählt zu einer der wichtigsten Aufgaben der Hämatopathologie und ist Basis für ergänzende molekularpathologische Untersuchungen. Zusätzlich zu diesen bekannten Prinzipien versuchen wir eine neue Methodik und Sichtweise, die dreidimensionale (3D) Untersuchung von fixiertem Lymphknotengewebe, in das Lymphadenitis-Kapitel zu integrieren. Dies mag zunächst ungewöhnlich erscheinen. Der Versuch wird dennoch unternommen, da die 3D-Darstellung morphologische Details erkennen lässt, die neue Interpretationen von Zellinteraktionen, Abgrenzung und Funktionen von Lymphknotenkompartimenten wie Keimzentren und T‑Zonen ermöglicht.

Abstract

The human body comprises around 600 lymph nodes as constituents of a decentralized and dispersed immune system. The main task of lymph nodes is cleaning the lymph fluid and defending the organism against outer and inner threats by bacteria, viruses and tumour cells. The histologic picture of lymph nodes reflects the different strategies of the innate and adaptive immune system, which allocates antigen presenting cells, macrophages, B‑ and T‑cell systems and reticulum cells. However, the histological picture, without any additional investigations, usually only allows speculation about the causative agent like toxoplasmosis, other bacteria or viruses. This chapter describes different lymph node reactions in detail in order to obtain a better understanding of specific immune reactions allowing a precise diagnosis and a reliable distinction from malignant processes. The last issue in particular is one of the main tasks of haematopathology. In addition to these known principles, we try to integrate results obtained with the new method of three-dimensional (3D) microscopy of fixed lymphoid tissue. At first glance, this seems to be unusual. Nevertheless, we try to apply this approach, since 3D visualization of morphological details provides distinct cellular details as well as new interpretations of cell–cell interactions and the functions of lymphoid compartments, like germinal centres and T‑zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Baraban E, Sadigh S, Rosenbaum J et al (2019) Cyclin D1 expression and novel mutational findings in Rosai-Dorfman disease. Br J Haematol 186:837–844

    Article  CAS  Google Scholar 

  2. Bledsoe JR, Ferry JA, Neyaz A et al (2021) IgG4-related lymphadenopathy: a comparative study of 41 cases reveals distinctive histopathologic features. Am J Surg Pathol 45:178–192

    Article  Google Scholar 

  3. Bräuninger A, Yang W, Wacker HH et al (2001) B‑cell development in progressively transformed germinal centers: similarities and differences compared with classical germinal centers and lymphocyte-predominant Hodgkin disease. Blood 97:714–719

    Article  Google Scholar 

  4. Butzmann A, Kumar J, Sridhar K et al (2021) A review of genetic abnormalities in unicentric and multicentric Castleman disease. Biology (Basel) 10(4):251

    CAS  Google Scholar 

  5. Chang CC, Osipov V, Wheaton S et al (2003) Follicular hyperplasia, follicular lysis, and progressive transformation of germinal centers. A sequential spectrum of morphologic evolution in lymphoid hyperplasia. Am J Clin Pathol 120:322–326

    Article  Google Scholar 

  6. Chang KC, Wang YC, Hung LY et al (2014) Monoclonality and cytogenetic abnormalities in hyaline vascular Castleman disease. Mod Pathol 27:823–831

    Article  CAS  Google Scholar 

  7. Deshpande V, Zen Y, Chan JK et al (2012) Consensus statement on the pathology of IgG4-related disease. Mod Pathol 25:1181–1192

    Article  Google Scholar 

  8. Dumas G, Prendki V, Haroche J et al (2014) Kikuchi-Fujimoto disease: retrospective study of 91 cases and review of the literature. Medicine 93:372–382

    Article  Google Scholar 

  9. Fajgenbaum DC (2018) Novel insights and therapeutic approaches in idiopathic multicentric Castleman disease. Hematology Am Soc Hematol Educ Program 2018:318–325

    Article  Google Scholar 

  10. Fajgenbaum DC, Uldrick TS, Bagg A et al (2017) International, evidence-based consensus diagnostic criteria for HHV-8-negative/idiopathic multicentric Castleman disease. Blood 129:1646–1657

    Article  CAS  Google Scholar 

  11. Hansmann ML, Godde-Salz E, Hui PK et al (1986) Cytogenetic findings in nodular paragranuloma (Hodgkin’s disease with lymphocytic predominance; nodular) and in progressively transformed germinal centers. Cancer Genet Cytogenet 21:319–325

    Article  CAS  Google Scholar 

  12. Hartmann S, Winkelmann R, Metcalf RA et al (2015) Immunoarchitectural patterns of progressive transformation of germinal centers with and without nodular lymphocyte-predominant Hodgkin lymphoma. Hum Pathol 46:1655–1661

    Article  Google Scholar 

  13. Hsu SM, Waldron JA, Xie SS et al (1993) Expression of interleukin‑6 in Castleman’s disease. Hum Pathol 24:833–839

    Article  CAS  Google Scholar 

  14. Johrens K, Moos V, Schneider T et al (2010) Interferon-gamma and T‑bet expression in a patient with toxoplasmic lymphadenopathy. Hum Immunol 71:366–371

    Article  Google Scholar 

  15. Kiil K, Bein J, Schuhmacher B et al (2018) A high number of IgG4-positive plasma cells rules out nodular lymphocyte predominant Hodgkin lymphoma. Virchows Arch 473:759–764

    Article  CAS  Google Scholar 

  16. Kojima M, Nakamura S, Motoori T et al (2002) Follicular hyperplasia presenting with a marginal zone pattern in a reactive lymph node lesion. APMIS 110:325–331

    Article  Google Scholar 

  17. Liebers J, Wurzel P, Reisinger KB et al (2019) 3D image analysis reveals differences of CD30 positive cells and network formation in reactive and malignant human lymphoid tissue (classical Hodgkin lymphoma). PLoS ONE 14:e224156

    Article  CAS  Google Scholar 

  18. Nguyen DT, Diamond LW, Hansmann ML et al (1994) Castleman’s disease. Differences in follicular dendritic network in the hyaline vascular and plasma cell variants. Histopathology 24:437–443

    Article  CAS  Google Scholar 

  19. Oswald MS, Hansmann ML (2018) 3D approach visualizing cellular networks in human lymph nodes. Acta Histochem 120:720–727

    Article  Google Scholar 

  20. Oswald MS, Wurzel P, Hansmann ML (2019) 3D analysis of morphological alterations of the fibroblastic reticular cells in reactive and neoplastic human lymph nodes. Acta Histochem 121:769–775

    Article  Google Scholar 

  21. Pileri S, Kikuchi M, Helbron D et al (1982) Histiocytic necrotizing lymphadenitis without granulocytic infiltration. Virchows Arch 395:257–271

    Article  CAS  Google Scholar 

  22. Ravindran A, Goyal G, Go RS et al (2021) Rosai-Dorfman disease displays a unique monocyte-macrophage phenotype characterized by expression of OCT2. Am J Surg Pathol 45:35–44

    Article  Google Scholar 

  23. Sadeghi Shoreh Deli A, Scharf S, Steiner Y et al (2022) 3D analyses reveal T cells with activated nuclear features in T‑cell/histiocyte-rich large B‑cell lymphoma. Mod Pathol. https://doi.org/10.1038/s41379-022-01016-8

    Article  PubMed  Google Scholar 

  24. Sato Y, Inoue D, Asano N et al (2012) Association between IgG4-related disease and progressively transformed germinal centers of lymph nodes. Mod Pathol 25:956–967

    Article  CAS  Google Scholar 

  25. Sato Y, Kojima M, Takata K et al (2009) Systemic IgG4-related lymphadenopathy: a clinical and pathologic comparison to multicentric Castleman’s disease. Mod Pathol 22:589–599

    Article  CAS  Google Scholar 

  26. Shamoto M, Osada A, Shinzato M et al (1996) Do epidermal Langerhans cells, migrating from skin lesions, induce the paracortical hyperplasia of dermatopathic lymphadenopathy? Pathol Int 46:348–354

    Article  CAS  Google Scholar 

  27. Shanmugam V, Margolskee E, Kluk M et al (2016) Rosai-Dorfman disease harboring an activating KRAS K117N Missense mutation. Head Neck Pathol 10:394–399

    Article  Google Scholar 

  28. Steffen C (2004) Frederic Woringer: Pautrier-Woringer disease (lipomelanotic reticulosis/dermatopathic lymphadenitis). Am J Dermatopathol 26:499–503

    Article  Google Scholar 

  29. Thomos M, Wurzel P, Scharf S et al (2020) 3D investigation shows walls and wall-like structures around human germinal centres, probably regulating T‑ and B‑cell entry and exit. PLoS ONE 15:e242177

    Article  CAS  Google Scholar 

  30. Treetipsatit J, Rimzsa L, Grogan T et al (2014) Variable expression of B‑cell transcription factors in reactive immunoblastic proliferations: a potential mimic of classical Hodgkin lymphoma. Am J Surg Pathol 38:1655–1663

    Article  Google Scholar 

  31. Van Der Oord JJ, De Wolf-Peeters C, De Vos R et al (1984) The paracortical area in dermatopathic lymphadenitis and other reactive conditions of the lymph node. Virchows Arch B Cell Pathol Incl Mol Pathol 45:289–299

    Article  Google Scholar 

  32. Weniger MA, Tiacci E, Schneider S et al (2018) Human CD30+ B cells represent a unique subset related to Hodgkin lymphoma cells. J Clin Invest 128:2996–3007

    Article  Google Scholar 

  33. Zhang X, Rao H, Xu X et al (2018) Clinical characteristics and outcomes of Castleman disease: a multicenter study of 185 Chinese patients. Cancer Sci 109:199–206

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Hartmann.

Ethics declarations

Interessenkonflikt

S. Hartmann und M.-L. Hansmann geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Additional information

Schwerpunktherausgeber

F. Fend, Tübingen

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartmann, S., Hansmann, ML. Reaktive Lymphadenopathien. Pathologie 43, 271–281 (2022). https://doi.org/10.1007/s00292-022-01075-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-022-01075-3

Schlüsselwörter

Keywords

Navigation