Varianteninterpretation in der molekularen Pathologie und Onkologie

Eine Einführung

Variant interpretation in molecular pathology and oncology

An introduction

Zusammenfassung

Die immer umfangreichere genomische Diagnostik im Rahmen der Präzisionsonkologie erfordert einheitliche Bewertungskriterien für die Klassifizierung von Varianten im Hinblick auf ihre funktionelle Relevanz und therapeutischen Implikationen. In dieser Übersichtsarbeit stellen wir die wichtigsten derzeit gebräuchlichen Leitlinien und Klassifikationssysteme vor, erläutern Vor- und Nachteile sowie Unterschiede und Gemeinsamkeiten und beschreiben den schrittweisen, systematischen Prozess, der eine erfolgreiche Variantenbewertung ermöglicht.

Abstract

Increasingly extensive genomic diagnostics in cancer precision medicine require uniform evaluation criteria for the classification of variants with regard to their functional and therapeutic implications. In this review we present the most important guidelines and classification systems currently used in daily clinical practice, explain their advantages and disadvantages as well as differences and similarities, and present the step-by-step, systematic process that enables successful variant interpretation.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. 1.

    Bijlsma R, Wouters R, Wessels H et al (2020) Preferences to receive unsolicited findings of germline genome sequencing in a large population of patients with cancer. ESMO Open. https://doi.org/10.1136/esmoopen-2019-000619

    Google Scholar 

  2. 2.

    Califf RM (2018) Biomarker definitions and their applications. Exp Biol Med (Maywood) 243:213–221

    Google Scholar 

  3. 3.

    Cherny NI, Dafni U, Bogaerts J et al (2017) ESMO-magnitude of clinical benefit scale version 1.1. Ann Oncol 28:2340–2366

    Google Scholar 

  4. 4.

    De Vries EGE, Cherny NI, Voest EE (2019) When is off-label off-road? Ann Oncol 30:1536–1538

    Google Scholar 

  5. 5.

    Dickson D, Johnson J, Bergan R et al (2020) The master observational trial: a new class of master protocol to advance precision medicine. Cell 180:9–14

    Google Scholar 

  6. 6.

    Gautschi O, Milia J, Cabarrou B et al (2015) Targeted therapy for patients with BRAF-mutant lung cancer: results from the European EURAF cohort. J Thorac Oncol 10:1451–1457

    Google Scholar 

  7. 7.

    Gutzmer R, Stroyakovskiy D, Gogas H et al (2020) Atezolizumab, vemurafenib, and cobimetinib as first-line treatment for unresectable advanced BRAF(V600) mutation-positive melanoma (IMspire150): primary analysis of the randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 395:1835–1844

    Google Scholar 

  8. 8.

    Heining C, Horak P, Gröschel S et al (2017) Personalisierte Medizin: Strukturen, Tumorboards, Visionen. Forum 32:208–216

    Google Scholar 

  9. 9.

    Heining C, Horak P, Uhrig S et al (2018) NRG1 fusions in KRAS wild-type pancreatic cancer. Cancer Discov 8:1087–1095

    Google Scholar 

  10. 10.

    Horak P, Klink B, Heining C et al (2017) Precision oncology based on omics data: the NCT Heidelberg experience. Int J Cancer 141:877–886

    Google Scholar 

  11. 11.

    Howick J, Chalmers I, Glasziou P et al (2011) Explanation of the 2011 Oxford Centre for Evidence-Based Medicine (OCEBM) levels of evidence (background document). In: Oxford centre for evidence-based medicine

    Google Scholar 

  12. 12.

    Hyman DM, Piha-Paul SA, Won H et al (2018) HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nature 554:189–194

    Google Scholar 

  13. 13.

    Hyman DM, Puzanov I, Subbiah V et al (2015) Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med 373:726–736

    Google Scholar 

  14. 14.

    Kato S, Kim KH, Lim HJ et al (2020) Real-world data from a molecular tumor board demonstrates improved outcomes with a precision N‑of-One strategy. Nat Commun 11:4965

    Google Scholar 

  15. 15.

    Koopman B, Groen HJM, Ligtenberg MJL et al (2020) Multicenter comparison of molecular tumor boards in the Netherlands: definition, composition, methods, and targeted therapy recommendations. Oncologist. https://doi.org/10.1002/onco.13580

    Google Scholar 

  16. 16.

    Leichsenring J, Horak P, Kreutzfeldt S et al (2019) Variant classification in precision oncology. Int J Cancer 145:2996–3010

    Google Scholar 

  17. 17.

    Li MM, Chao E, Esplin ED et al (2020) Points to consider for reporting of germline variation in patients undergoing tumor testing: a statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med 22:1142–1148

    Google Scholar 

  18. 18.

    Li MM, Datto M, Duncavage EJ et al (2017) Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the association for molecular pathology, American society of clinical oncology, and college of American pathologists. J Mol Diagn 19:4–23

    Google Scholar 

  19. 19.

    Luchini C, Lawlor RT, Milella M et al (2020) Molecular tumor boards in clinical practice. Trends Cancer 6:738–744

    Google Scholar 

  20. 20.

    Mandelker D, Donoghue M, Talukdar S et al (2019) Germline-focussed analysis of tumour-only sequencing: recommendations from the ESMO precision medicine working group. Ann Oncol 30:1221–1231

    Google Scholar 

  21. 21.

    Mateo J, Carreira S, Sandhu S et al (2015) DNA-repair defects and Olaparib in metastatic prostate cancer. N Engl J Med 373:1697–1708

    Google Scholar 

  22. 22.

    Mateo J, Chakravarty D, Dienstmann R et al (2018) A framework to rank genomic alterations as targets for cancer precision medicine: the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann Oncol 29:1895–1902

    Google Scholar 

  23. 23.

    Mateo J, Porta N, Bianchini D et al (2020) Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol 21:162–174

    Google Scholar 

  24. 24.

    Mazieres J, Cropet C, Montane L et al (2020) Vemurafenib in non-small-cell lung cancer patients with BRAF(V600) and BRAF(nonV600) mutations. Ann Oncol 31:289–294

    Google Scholar 

  25. 25.

    Mosele F, Remon J, Mateo J et al (2020) Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group. Ann Oncol 31:1491–1505

    Google Scholar 

  26. 26.

    Pallarz S, Benary M, Lamping M et al (2019) Comparative analysis of public knowledge bases for precision oncology. JCO Precis Oncol. https://doi.org/10.1200/PO.18.00371

    Google Scholar 

  27. 27.

    Pereira R, Oliveira J, Sousa M (2020) Bioinformatics and computational tools for next-generation sequencing analysis in clinical genetics. J Clin Med. https://doi.org/10.3390/jcm9010132

    Google Scholar 

  28. 28.

    Peters S, Michielin O, Zimmermann S (2013) Dramatic response induced by vemurafenib in a BRAF V600E-mutated lung adenocarcinoma. J Clin Oncol 31:e341–e344

    Google Scholar 

  29. 29.

    Planchard D, Besse B, Groen HJM et al (2016) Dabrafenib plus trametinib in patients with previously treated BRAF(V600E)-mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial. Lancet Oncol 17:984–993

    Google Scholar 

  30. 30.

    Planchard D, Smit EF, Groen HJM et al (2017) Dabrafenib plus trametinib in patients with previously untreated BRAF(V600E)-mutant metastatic non-small-cell lung cancer: an open-label, phase 2 trial. Lancet Oncol 18:1307–1316

    Google Scholar 

  31. 31.

    Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–424

    Google Scholar 

  32. 32.

    Roy S, Coldren C, Karunamurthy A et al (2018) Standards and guidelines for validating next-generation sequencing bioinformatics pipelines: a joint recommendation of the Association for Molecular Pathology and the College of American Pathologists. J Mol Diagn 20:4–27

    Google Scholar 

  33. 33.

    Sawyers CL (2008) The cancer biomarker problem. Nature 452:548–552

    Google Scholar 

  34. 34.

    Shaw AT, Ou SH, Bang YJ et al (2014) Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med 371:1963–1971

    Google Scholar 

  35. 35.

    Tamborero D, Dienstmann R, Rachid MH et al (2020) Support systems to guide clinical decision-making in precision oncology: the Cancer Core Europe Molecular Tumor Board Portal. Nat Med 26:992–994

    Google Scholar 

  36. 36.

    Van Der Velden DL, Hoes LR, Van Der Wijngaart H et al (2019) The drug rediscovery protocol facilitates the expanded use of existing anticancer drugs. Nature 574:127–131

    Google Scholar 

  37. 37.

    Van Der Velden DL, Van Herpen CML, Van Laarhoven HWM et al (2017) Molecular tumor boards: current practice and future needs. Ann Oncol 28:3070–3075

    Google Scholar 

  38. 38.

    Wagner AH, Walsh B, Mayfield G et al (2020) A harmonized meta-knowledgebase of clinical interpretations of somatic genomic variants in cancer. Nat Genet 52:448–457

    Google Scholar 

  39. 39.

    Wan PT, Garnett MJ, Roe SM et al (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B‑RAF. Cell 116:855–867

    Google Scholar 

  40. 40.

    Westphalen BC, Bokemeyer C, Buttner R et al (2020) Conceptual framework for precision cancer medicine in Germany: Consensus statement of the Deutsche Krebshilfe working group ‘Molecular Diagnostics and Therapy. Eur J Cancer 135:1–7

    Google Scholar 

  41. 41.

    Wang K, Li M, Hakonarson H (2010) ANNOVAR: Functional annotation of genetic variants from next-generation sequencing data. Nucl Acids Res 38:e164

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Albrecht Stenzinger.

Ethics declarations

Interessenkonflikt

P. Horak, J. Leichsenring, S. Kreuzfeldt, D. Kazdal, V. Teleanu, V. Endris, A.-L. Volckmar, M. Renner, M. Kirchner, C. E. Heilig, O. Neumann, P. Schirmacher, S. Fröhling und A. Stenzinger geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Die Autoren S. Fröhling und A. Stenzinger teilen sich die Letztautorenschaft.

Schwerpunktherausgeber

H. Kreipe, Hannover

W. Weichert, München

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Horak, P., Leichsenring, J., Kreuzfeldt, S. et al. Varianteninterpretation in der molekularen Pathologie und Onkologie. Pathologe (2021). https://doi.org/10.1007/s00292-021-00938-5

Download citation

Schlüsselwörter

  • Mutation
  • Tumorstaging
  • Präzisionsmedizin
  • Tumorbiomarker
  • Ganzgenomsequanzierung

Keywords

  • Mutation
  • Neoplasm staging
  • Precision medicine
  • Tumor biomarkers
  • Whole genome sequencing