Skip to main content
Log in

Neues in der aktuellen WHO-Klassifikation (2020) für Weichgewebssarkome

New in the current WHO classification (2020) for soft tissue sarcomas

  • Schwerpunkt: Neue WHO-Klassifikationen und Digitales Lernen
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Die aktuelle WHO-Klassifikation für Weichgewebs- und Knochensarkome aus 2020 beinhaltet zahlreiche neue Entitäten, die zumeist infolge neuer molekularpathologischer Befunde definiert wurden. In der folgenden Arbeit stellen wir vornehmlich translokationspositive Tumoren vor, die das Spektrum monomorphzelliger Neoplasien erweitern. Die undifferenzierten klein-rundzelligen Sarkome haben in der WHO-Klassifikation ein eigenes Kapitel erhalten, um die morphologischen, molekularpathologischen und biologischen Besonderheiten der einzelnen Subtypen zu würdigen. Eine weitere Besonderheit stellen derzeit noch nicht in der WHO-Klassifikation befindliche Tumoren mit GLI1-Aktivierung dar, deren Biologie sich durch ganz unterschiedliche Aktivierungsmechanismen erheblich unterscheiden kann. NTRK-getriebene Tumoren bieten als Besonderheit ein therapeutisches Target an, gegen das verschiedene Inhibitoren zur Verfügung stehen. Schließlich gibt es auch bei den Rhabdomyosarkomen neue, molekular definierte Subtypen mit unterschiedlicher Biologie.

Abstract

The current WHO classification for tumors of soft tissue and bone includes numerous new entities, most often defined by novel molecular findings. In this article, we present translocation-positive tumors to broaden the spectrum of monomorphic mesenchymal neoplasias. The undifferentiated small round cell sarcomas are now assembled in their own separate chapter to underline their occurrence in both soft tissue and bone, emphasizing their morphologic, molecular, and biologic differences. Another interesting new group are tumors with GLI1 activation, which, however, have not yet been included into the WHO classification. NTRK-driven tumors present with a potential therapeutic target for several established inhibitors. Finally, there have been novel findings in rhabdomyosarcomas allowing more precise subtyping associated with different biological behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. WHO (2020) International agency for research on cancer, 5. Aufl. WHO classification of tumour series, Bd. 3. WHO Classification of Tumours Editorial Board, Soft tissue and bone tumours, Lyon

    Google Scholar 

  2. Ambros IM, Ambros PF, Strehl S, Kovar H, Gadner H, Salzer-Kuntschik M (1991) MIC2 is a specific marker for Ewing’s sarcoma and peripheral primitive neuroectodermal tumors. Evidence for a common histogenesis of Ewing’s sarcoma and peripheral primitive neuroectodermal tumors from MIC2 expression and specific chromosome aberration. Cancer 67:1886–1893

    CAS  PubMed  Google Scholar 

  3. Parham DM, Hijazi Y, Steinberg SM, Meyer WH, Horowitz M, Tzen CY, Wexler LH, Tsokos M (1999) Neuroectodermal differentiation in Ewing’s sarcoma family of tumors does not predict tumor behavior. Hum Pathol 30:911–918

    CAS  PubMed  Google Scholar 

  4. Bishop JA, Alaggio R, Zhang L, Seethala RR, Antonescu CR (2015) Adamantinoma-like Ewing family tumors of the head and neck: a pitfall in the differential diagnosis of basaloid and myoepithelial carcinomas. Am J Surg Pathol 39(9):1267–1274

    PubMed  PubMed Central  Google Scholar 

  5. Folpe AL, Hill CE, Parham DM, O’Shea PA, Weiss SW (2000) Immunohistochemical detection of FLI‑1 protein expression: a study of 132 round cell tumors with emphasis on CD99-positive mimics of Ewing’s sarcoma/primitive neuroectodermal tumor. Am J Surg Pathol 24:1657–1662

    CAS  PubMed  Google Scholar 

  6. Wang WL, Patel NR, Caragea M, Hogendoorn PC, Lopez-Terrada D, Hornick JL, Lazar AJ (2012) Expression of ERG, an Ets family transcription factor, identifies ERG-rearranged Ewing sarcoma. Mod Pathol 25:1378–1383

    CAS  PubMed  Google Scholar 

  7. Hung YP, Fletcher CD, Hornick JL (2016) Evaluation of NKX2‑2 expression in round cell sarcomas and other tumors with EWSR1 rearrangement: imperfect specificity for Ewing sarcoma. Mod Pathol 29(4):370–380

    CAS  PubMed  Google Scholar 

  8. Machado I, Navarro S, Picci P, Llombart-Bosch A (2016) The utility of SATB2 immunohistochemical expression in distinguishing between osteosarcomas and their malignant bone tumor mimickers, such as Ewing sarcomas and chondrosarcomas. Pathol Res Pract 212:811–816

    CAS  PubMed  Google Scholar 

  9. Ginsberg JP, de Alava E, Ladanyi M, Wexler LH, Kovar H, Paulussen M, Zoubek A, Dockhorn-Dworniczak B, Juergens H, Wunder JS, Andrulis IL, Malik R, Sorensen PH, Womer RB, Barr FG (1999) EWS-FLI1 and EWS-ERG gene fusions are associated with similar clinical phenotypes in Ewing’s sarcoma. J Clin Oncol 17:1809–1814

    CAS  PubMed  Google Scholar 

  10. Romeo S, Dei Tos AP (2010) Soft tissue tumors associated with EWSR1 translocation. Virchows Arch 456:219–234

    CAS  PubMed  Google Scholar 

  11. Chen S, Deniz K, Sung YS, Zhang L, Dry S, Antonescu CR (2016) Ewing sarcoma with ERG gene rearrangements: a molecular study focusing on the prevalence of FUS-ERG and common pitfalls in detecting EWSR1-ERG fusions by FISH. Genes Chromosomes Cancer 55:340–349

    CAS  PubMed  Google Scholar 

  12. Koelsche C, Kriegsmann M, Kommoss FKF, Stichel D, Kriegsmann K, Vokuhl C, Grünewald TGP, Romero-Pérez L, Kirchner T, de Alava E, Diaz-Martin J, Hartmann W, Baumhoer D, Antonescu CR, Szuhai K, Flucke U, Dirksen U, Pfister SM, Jones DTW, Mechtersheimer G, von Deimling A (2019) DNA methylation profiling distinguishes Ewing-like sarcoma with EWSR1-NFATc2 fusion from Ewing sarcoma. J Cancer Res Clin Oncol 145:1273–1281

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Szuhai K, Ijszenga M, de Jong D, Karseladze A, Tanke HJ, Hogendoorn PC (2009) The NFATc2 gene is involved in a novel cloned translocation in a Ewing sarcoma variant that couples its function in immunology to oncology. Clin Cancer Res 15:2259–2268

    CAS  PubMed  Google Scholar 

  14. Watson S, Perrin V, Guillemot D, Reynaud S, Coindre JM, Karanian M, Guinebretière JM, Freneaux P, Le Loarer F, Bouvet M, Galmiche-Rolland L, Larousserie F, Longchampt E, Ranchere-Vince D, Pierron G, Delattre O, Tirode F (2018) Transcriptomic definition of molecular subgroups of small round cell sarcomas. J Pathol 245:29–40

    CAS  PubMed  Google Scholar 

  15. Bode-Lesniewska B, Fritz C, Exner GU, Wagner U, Fuchs B (2019) EWSR1-NFATC2 and FUS-NFATC2 gene fusion-associated mesenchymal tumors: clinicopathologic correlation and literature review. Sarcoma 26:9386390

    Google Scholar 

  16. Perret R, Escuriol J, Velasco V, Mayeur L, Soubeyran I, Delfour C, Aubert S, Polivka M, Karanian M, Meurgey A, Le Guellec S, Weingertner N, Hoeller S, Coindre JM, Larousserie F, Pierron G, Tirode F, Le Loarer F (2020) NFATc2-rearranged sarcomas: clinicopathologic, molecular, and cytogenetic study of 7 cases with evidence of AGGRECAN as a novel diagnostic marker. Mod Pathol 33:1930–1944

    CAS  PubMed  Google Scholar 

  17. Bridge JA, Sumegi J, Druta M, Bui MM, Henderson-Jackson E, Linos K, Baker M, Walko CM, Millis S, Brohl AS (2019) Clinical, pathological, and genomic features of EWSR1-PATZ1 fusion sarcoma. Mod Pathol 32(11):1593–1604

    PubMed  Google Scholar 

  18. Chougule A, Taylor MS, Nardi V, Chebib I, Cote GM, Choy E, Nielsen GP, Deshpande V (2019) Spindle and round cell sarcoma with EWSR1-PATZ1 gene fusion: a sarcoma with polyphenotypic differentiation. Am J Surg Pathol 43(2):220–228

    PubMed  PubMed Central  Google Scholar 

  19. Tsuda Y, Zhang L, Meyers P, Tap WD, Healey JH, Antonescu CR (2020) The clinical heterogeneity of round cell sarcomas with EWSR1/FUS gene fusions: Impact of gene fusion type on clinical features and outcome. Genes Chromosomes Cancer 59(9):525–534

    CAS  PubMed  Google Scholar 

  20. Pižem J, Šekoranja D, Zupan A, Boštjančič E, Matjašič A, Mavčič B, Contreras JA, Gazič B, Martinčič D, Snoj Ž, Limpel NKA, Salapura V (2020) FUS-NFATC2 or EWSR1-NFATC2 fusions are present in a large proportion of simple bone cysts. Am J Surg Pathol 44:1623–1634

    PubMed  Google Scholar 

  21. Diaz-Perez JA, Nielsen GP, Antonescu C, Taylor MS, Lozano-Calderon SA, Rosenberg AE (2019) EWSR1/FUS-NFATc2 rearranged round cell sarcoma: clinicopathological series of 4 cases and literature review. Hum Pathol 90:45–53

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang GY, Thomas DG, Davis JL, Ng T, Patel RM, Harms PW, Betz BL, Schuetze SM, McHugh JB, Horvai AE, Cho SJ, Lucas DR (2019) EWSR1-NFATC2 translocation-associated sarcoma clinicopathologic findings in a rare aggressive primary bone or soft tissue tumor. Am J Surg Pathol 43:1112–1122

    PubMed  Google Scholar 

  23. Michal M, Rubin BP, Agaimy A, Kosemehmetoglu K, Rudzinski ER, Linos K, John I, Gatalica Z, Davis JL, Liu YJ, McKenney JK, Billings SD, Švajdler M, Koshyk O, Kinkor Z, Michalová K, Kalmykova AV, Yusifli Z, Ptáková N, Hájková V, Grossman P, Šteiner P, Michal M (2020) EWSR1-PATZ1-rearranged sarcoma: a report of nine cases of spindle and round cell neoplasms with predilection for thoracoabdominal soft tissues and frequent expression of neural and skeletal muscle markers. Mod Pathol. https://doi.org/10.1038/s41379-020-00684-8

    Article  PubMed  Google Scholar 

  24. Kawamura-Saito M, Yamazaki Y, Kaneko K, Kawaguchi N, Kanda H, Mukai H, Gotoh T, Motoi T, Fukayama M, Aburatani H, Takizawa T, Nakamura T (2006) Fusion between CIC and DUX4 up-regulates PEA3 family genes in Ewing-like sarcomas with t(4;19)(q35;q13) translocation. Hum Mol Genet 15(13):2125–2137

    CAS  PubMed  Google Scholar 

  25. Italiano A, Sung YS, Zhang L, Singer S, Maki RG, Coindre JM, Antonescu CR (2012) High prevalence of CIC fusion with double-homeobox (DUX4) transcription factors in EWSR1-negative undifferentiated small blue round cell sarcomas. Genes Chromosomes Cancer 51:207–218

    CAS  PubMed  Google Scholar 

  26. Le Loarer F, Pissaloux D, Watson S, Godfraind C, Galmiche-Rolland L, Silva K, Mayeur L, Italiano A, Michot A, Pierron G, Vasiljevic A, Ranchère-Vince D, Coindre JM, Tirode F (2019) Clinicopathologic Features of CIC-NUTM1 Sarcomas, a New Molecular Variant of the Family of CIC-Fused Sarcomas. Am J Surg Pathol 43:268–276

    PubMed  Google Scholar 

  27. Solomon DA, Brohl AS, Khan J, Miettinen M (2014) Clinicopathologic features of a second patient with Ewing-like sarcoma harboring CIC-FOXO4 gene fusion. Am J Surg Pathol 38:1724–1725

    PubMed  PubMed Central  Google Scholar 

  28. Sugita S, Arai Y, Aoyama T, Asanuma H, Mukai W, Hama N, Emori M, Shibata T, Hasegawa T (2017) NUTM2A-CIC fusion small round cell sarcoma: a genetically distinct variant of CIC-rearranged sarcoma. Hum Pathol 65:225–230

    CAS  PubMed  Google Scholar 

  29. Huang SC, Zhang L, Sung YS, Chen CL, Kao YC, Agaram NP, Singer S, Tap WD, D’Angelo S, Antonescu CR (2016) Recurrent CIC gene abnormalities in angiosarcomas: a molecular study of 120 cases with concurrent investigation of PLCG1, KDR, MYC, and FLT4 gene alterations. Am J Surg Pathol 40(5):645–655

    PubMed  PubMed Central  Google Scholar 

  30. Antonescu CR, Owosho AA, Zhang L, Chen S, Deniz K, Huryn JM, Kao YC, Huang SC, Singer S, Tap W, Schaefer IM, Fletcher CD (2017) Sarcomas with CIC-rearrangements are a distinct pathologic entity with aggressive outcome: a clinicopathologic and molecular study of 115 cases. Am J Surg Pathol 41:941–949

    PubMed  PubMed Central  Google Scholar 

  31. Specht K, Sung YS, Zhang L, Richter GH, Fletcher CD, Antonescu CR (2014) Distinct transcriptional signature and immunoprofile of CIC-DUX4 fusion-positive round cell tumors compared to EWSR1-rearranged Ewing sarcomas: further evidence toward distinct pathologic entities. Genes Chromosomes Cancer 53:622–633

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hung YP, Fletcher CD, Hornick JL (2016) Evaluation of ETV4 and WT1 expression in CIC-rearranged sarcomas and histologic mimics. Mod Pathol 29:1324–1334

    CAS  PubMed  Google Scholar 

  33. Yoshida A, Arai Y, Kobayashi E, Yonemori K, Ogura K, Hama N, Mukai W, Motoi T, Kawai A, Shibata T, Hiraoka N (2017) CIC break-apart fluorescence in-situ hybridization misses a subset of CIC-DUX4 sarcomas: a clinicopathological and molecular study. Histopathology 71:461–469

    PubMed  Google Scholar 

  34. Kao YC, Sung YS, Chen CL, Zhang L, Dickson BC, Swanson D, Vaiyapuri S, Latif F, Alholle A, Huang SC, Hornick JL, Antonescu CR (2017) ETV transcriptional upregulation is more reliable than RNA sequencing algorithms and FISH in diagnosing round cell sarcomas with CIC gene rearrangements. Genes Chromosomes Cancer 56:501–510

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pierron G, Tirode F, Lucchesi C, Reynaud S, Ballet S, Cohen-Gogo S, Perrin V, Coindre JM, Delattre O (2012) A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion. Nat Genet 44:461–466

    CAS  PubMed  Google Scholar 

  36. Kao YC, Sung YS, Zhang L, Huang SC, Argani P, Chung CT, Graf NS, Wright DC, Kellie SJ, Agaram NP, Ludwig K, Zin A, Alaggio R, Antonescu CR (2016) Recurrent BCOR internal tandem duplication and YWHAE-NUTM2B fusions in soft tissue undifferentiated round cell sarcoma of infancy: overlapping genetic features with clear cell sarcoma of kidney. Am J Surg Pathol 40:1009–1020

    PubMed  PubMed Central  Google Scholar 

  37. Specht K, Zhang L, Sung YS, Nucci M, Dry S, Vaiyapuri S, Richter GH, Fletcher CD, Antonescu CR (2016) Novel BCOR-MAML3 and ZC3H7B-BCOR gene fusions in undifferentiated small blue round cell sarcomas. Am J Surg Pathol 40:433–442

    PubMed  PubMed Central  Google Scholar 

  38. Kao YC, Owosho AA, Sung YS, Zhang L, Fujisawa Y, Lee JC, Wexler L, Argani P, Swanson D, Dickson BC, Fletcher CDM, Antonescu CR (2018) BCOR-CCNB3 fusion positive sarcomas: a clinicopathologic and molecular analysis of 36 cases with comparison to morphologic spectrum and clinical behavior of other round cell sarcomas. Am J Surg Pathol 42(5):604–615

    PubMed  PubMed Central  Google Scholar 

  39. Kao YC, Sung YS, Zhang L, Jungbluth AA, Huang SC, Argani P, Agaram NP, Zin A, Alaggio R, Antonescu CR (2016) BCOR overexpression is a highly sensitive marker in round cell sarcomas with BCOR genetic abnormalities. Am J Surg Pathol 40:1670–1678

    PubMed  PubMed Central  Google Scholar 

  40. Puls F, Niblett A, Marland G, Gaston CL, Douis H, Mangham DC, Sumathi VP, Kindblom LG (2014) BCOR-CCNB3 (Ewing-like) sarcoma: a clinicopathologic analysis of 10 cases, in comparison with conventional Ewing sarcoma. Am J Surg Pathol 38:1307–1318

    PubMed  Google Scholar 

  41. Peters TL, Kumar V, Polikepahad S, Lin FY, Sarabia SF, Liang Y, Wang WL, Lazar AJ, Doddapaneni H, Chao H, Muzny DM, Wheeler DA, Okcu MF, Plon SE, Hicks MJ, Lopez-Terrada D, Parsons DW, Roy A (2015) BCOR-CCNB3 fusions are frequent in undifferentiated sarcomas of male children. Mod Pathol 28:575–586

    CAS  PubMed  Google Scholar 

  42. Dahlen A, Fletcher CD, Mertens F, Fletcher JA, Perez-Atayde AR, Hicks MJ, Debiec-Rychter M, Sciot R, Wejde J, Wedin R, Mandahl N, Panagopoulos I (2004) Activation of the GLI oncogene through fusion with the beta-actin gene (ACTB) in a group of distinctive pericytic neoplasms: pericytoma with t(7;12). Am J Pathol 164:1645–1653

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Miettinen M, Makhlouf HR, Sobin LH, Lasota J (2009) Plexiform fibromyxoma: a distinctive benign gastric antral neoplasm not to be confused with a Myxoid GIST. Am J Surg Pathol 33:1624–1632

    PubMed  Google Scholar 

  44. Spans L, Fletcher CDM, Antonescu CR, Rouquette A, Coindre JM, Sciot R, Debiec-Rychter M (2016) Recurrent MALAT1–GLI1 oncogenic fusion and GLI1 up-regulation define a subset of plexiform fibromyxoma. J Pathol 239:335–343

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Fukazawa M, Koga H, Hiroshige S, Matsumoto T, Nakazono Y, Yoshikawa Y (2019) Pediatric plexiform fibromyxoma. A PRISMA-compliant systematic literature review. Medicine 98(3):e14186

    PubMed  PubMed Central  Google Scholar 

  46. Graham RP, Nair AA, Davila JI, Jin L, Jen J, Sukov WR, Wu TT, Appelman HD, Torres-Mora J, Perry KD, Zhang L, Kloft-Nelson SM, Knudson RA, Greipp PT, Folpe AL (2017) Gastroblastoma harbors a recurrent somatic MALAT1-GLI1 fusion gene. Mod Pathol 30:1443–1452

    CAS  PubMed  Google Scholar 

  47. Miettinen M, Dow N, Lasota J, Sobin LH (2009) A distinctive novel epitheliomesenchymal biphasic tumor of the stomach in young adults (‘gastroblastoma’): a series of 3 cases. Am J Surg Pathol 33:1370–1377

    PubMed  Google Scholar 

  48. Antonescu CR, Agaram NP, Sung YS, Zhang L, Swanson D, Dickson BC (2018) A distinct malignant epithelioid neoplasm with GLI1 gene rearrangements, frequent S100 protein expression and metastatic potenzialPotenzial: expanding the spectrum of pathologic entities with ACTB1/MALAT1/PTCH1-GLI1 fusions. Am J Surg Pathol 42(4):553–560

    PubMed  PubMed Central  Google Scholar 

  49. Agaram NP, Zhang L, Yun-Shao S, Singer S, Stevens T, Prieto-Granada CN, Bishop JA, Wood BA, Swanson D, Dickson BC, Antonescu CR (2019) GLI1-amplifications expands the spectrum of soft tissue neoplasms defined by GLI1 gene fusions. Mod Pathol 32(11):1617–1626

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Amatu A, Sartore-Bianchi A, Siena S (2016) NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open 1:e23

    PubMed  PubMed Central  Google Scholar 

  51. Kao YC, Sung YS, Argani P, Swanson D, Alaggio R, Tap W, Wexler L, Dickson BC, Antonescu CR (2020) NTRK3 Overexpression in Undifferentiated Sarcomas with YWHAE and BCOR Genetic Alterations. Mod Pathol 33(7):1341–1349

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kao YC, Fletcher CDM, Alaggio R, Wexler L, Zhang L, Sung YS, Orhan D, Chang WC, Swanson D, Dickson BC, Antonescu CR (2018) Recurrent BRAF Gene Fusions in a Subset of Pediatric Spindle cell Sarcomas—Expanding the Genetic Spectrum of Tumors with Overlapping Features with Infantile Fibrosarcoma. Am J Surg Pathol 42(1):28–38

    PubMed  PubMed Central  Google Scholar 

  53. Wegert J, Vokuhl C, Collord G, Del Castillo Velasco-Herrera M, Farndon SJ, Guzzo C, Jorgensen M, Anderson J, Slater O, Duncan C, Bausenwein S, Streitenberger H, Ziegler B, Furtwängler R, Graf N, Stratton MR, Campbell PJ, Jones DTW, Koelsche C, Pfister SM, Mifsud W, Sebire N, Sparber-Sauer M, Koscielniak E, Rosenwald A, Gessler M, Behjati S (2018) Recurrent intragenic rearrangements of EGFR and BRAF in soft tissue tumors of infants. Nat Commun 9:2378

    PubMed  PubMed Central  Google Scholar 

  54. Antonescu CR, Dickson BC, Swanson D, Zhang L, Sung YS, Kao YC, Chang WC, Ran L, Pappo A, Bahrami A, Chi P, Fletcher CD (2019) Spindle cell tumors with RET gene fusions exhibit a morphologic spectrum akin to tumors with NTRK gene fusions. Am J Surg Pathol 43(10):1384–1391

    PubMed  PubMed Central  Google Scholar 

  55. Suurmeijer AJ, Dickson BC, Swanson D, Zhang L, Sung YS, Huang HY, Fletcher CD, Antonescu CR (2019) The histologic spectrum of soft tissue spindle cell tumors with NTRK3 gene rearrangements. Genes Chromosomes Cancer 58(11):739–746

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Demetri GD, Antonescu CR, Bjerkehagen B, Bovée JVMG, Boye K, Chacón M, Dei Tos AP, Desai J, Fletcher JA, Gelderblom H, George S, Gronchi A, Haas RL, Hindi N, Hohenberger P, Joensuu H, Jones RL, Judson I, Kang YK, Kawai A, Lazar AJ, Le Cesne A, Maestro R, Maki RG, Martín J, Patel S, Penault-Llorca F, Premanand Raut C, Rutkowski P, Safwat A, Sbaraglia M, Schaefer IM, Shen L, Serrano C, Schöffski P, Stacchiotti S, Sundby Hall K, Tap WD, Thomas DM, Trent J, Valverde C, van der Graaf WTA, von Mehren M, Wagner A, Wardelmann E, Naito Y, Zalcberg J, Blay JY (2020) Diagnosis and management of tropomyosin receptor kinase (TRK) fusion sarcomas: expert recommendations from the World Sarcoma Network. Ann Oncol 31(11):1506–1517

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Pfarr N, Kirchner M, Lehmann U, Leichsenring J, Merkelbach-Bruse S, Glade J, Hummel M, Stögbauer F, Lehmann A, Trautmann M, Kumbrink J, Jung A, Dietmaier W, Endris V, Kazdal D, Evert M, Horst D, Kreipe H, Kirchner T, Wardelmann E, Lassen U, Büttner R, Weichert W, Dietel M, Schirmacher P, Stenzinger A (2020) Testing NTRK testing: Wet-lab and in silico comparison of RNA-based targeted sequencing assays. Genes Chromosomes Cancer 59(3):178–188

    CAS  PubMed  Google Scholar 

  58. Kirchner M, Glade J, Lehmann U, Merkelbach-Bruse S, Hummel M, Lehmann A, Trautmann M, Kumbrink J, Jung A, Dietmaier W, Endris V, Kazdal D, Ploeger C, Evert M, Horst D, Kreipe H, Kirchner T, Wardelmann E, Büttner R, Weichert W, Dietel M, Schirmacher P, Stenzinger A, Pfarr N (2020) NTRK testing: First results of the QuiP-EQA scheme and a comprehensive map of NTRK fusion variants and their diagnostic coverage by targeted RNA-based NGS assays. Genes Chromosomes Cancer 59(8):445–453

    CAS  PubMed  Google Scholar 

  59. Agaram NP, Zhang L, Sung YS et al (2019) Expanding the Spectrum of Intraosseous Rhabdomyosarcoma: Correlation Between 2 Distinct Gene Fusions and Phenotype. Am J Surg Pathol 43(5):695–702 (May)

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Wardelmann.

Ethics declarations

Interessenkonflikt

E. Wardelmann und W. Hartmann geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Schwerpunktherausgeberin

E. Wardelmann, Münster

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wardelmann, E., Hartmann, W. Neues in der aktuellen WHO-Klassifikation (2020) für Weichgewebssarkome. Pathologe 42, 281–293 (2021). https://doi.org/10.1007/s00292-021-00935-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-021-00935-8

Schlüsselwörter

Keywords

Navigation