Skip to main content
Log in

Tumormikromilieu im klassischen Hodgkin-Lymphom

Microenvironment in classical Hodgkin lymphoma

  • Schwerpunkt: Unser Immunsystem – der Staat im Staate
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Das klassische Hodgkin-Lymphom (cHL) ist auf histologischer Ebene gekennzeichnet durch ein quantitativ dominierendes Begleitinfiltrat, das in Abhängigkeit vom histologischen Subtyp und EBV(Epstein-Barr-Virus)-Status eine unterschiedliche Zusammensetzung aufweist. Derzeitig gültige pathogenetische Konzepte postulieren, dass die malignen Zellen in Form der sogenannten Hodgkin- bzw. Reed-Sternberg(HRS)-Zellen eine dominante Rolle in der Rekrutierung verschiedener Immunzellen einnehmen, die wiederum zum Überleben der Tumorzellpopulation beitragen. Unterstützt wird diese Hypothese durch genetische Analysen, die entscheidend dazu beigetragen haben, relevante Mechanismen zu identifizieren, mithilfe derer sich die HRS-Zellen einer wirksamen Immunantwort entziehen können. Neben einer reduzierten bzw. defekten Antigenpräsentation bedingt durch strukturelle Chromosomenaberrationen und Mutationen in Komponenten bzw. Regulatoren der Haupthistokompatibilitätskomponenten Klasse I und II, kommen vor allem Kopienzahlzugewinne des 9p24.1-Lokus eine bedeutsame Rolle zu. Letztere resultieren zumeist in einer verstärkten Expression von Liganden des programmierten Zelltod-Proteins PD‑1, die durch die Interaktion mit diesem auf T‑Lymphozyten exprimierten Rezeptor zu einer Suppression der Immunantwort führen. Die Reversibilität dieser inhibitorischen Rezeptor-Liganden-Wechselwirkung wird klinisch in Form sog. Checkpoint-Inhibitoren genutzt, die bei Patienten mit cHL, insbesondere auch in der Rezidivsituation, mit im Vergleich zu vielen anderen Tumorentitäten imposanten Ansprechraten überzeugt haben. Ultimatives Ziel ist die Integration dieser Informationen in prognostische bzw. prädiktive Modelle, die eine rationale Risikostratifizierung und basierend darauf eine Selektion optimaler Therapieregime ermöglicht.

Abstract

Classical Hodgkin lymphoma (cHL) is histologically characterized by a quantitatively dominating immune cell infiltrate. Its composition differs depending on the histological subtype and EBV (Epstein-Barr-Virus) status. Current pathogenic concepts postulate that the malignant cells, the so-called Hodgkin and Reed-Sternberg (HRS) cells, act as master recruiters, thereby actively shaping the microenvironment to support their proliferation and outgrowth. This view on the pathogenesis of cHL is further solidified by genetic studies, which have identified important mechanisms by which the HRS cells are enabled to escape immune surveillance. Besides an insufficient antigen presentation mediated by mutations and structural chromosomal changes in key components or regulators of major histocompatibility class I and II molecules, copy number gains of the 9p24.1 genomic locus encompassing JAK2 and the ligands of the programmed cell death protein 1 (PD-1), PD-L1 and PD-L2, play an important role in the pathogenesis of this disease as the engagement of those ligands with their cognate receptor leads to suppression of the immune response. Of importance, the reversibility of this inhibitory receptor-ligand interaction is key to the clinical success that checkpoint inhibitors had and continue to have in cHL patients, especially in the relapse setting. In addition, comprehensive assessment of microenvironment composition, integration with results from genetic studies, and correlation with clinical outcomes have led to the development of prognostic models, which may assist in an improved risk stratification, informed selection of treatment regimens, and therefore better outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Aldinucci D, Lorenzon D, Cattaruzza L et al (2008) Expression of CCR5 receptors on Reed–Sternberg cells and Hodgkin lymphoma cell lines: involvement of CCL5/Rantes in tumor cell growth and microenvironmental interactions. Int J Cancer 122:769–776

    Article  CAS  Google Scholar 

  2. Angelo M, Bendall SC, Finck R et al (2014) Multiplexed ion beam imaging of human breast tumors. Nat Med 20:436–442

    Article  CAS  Google Scholar 

  3. Aoki T, Chong LC, Takata K et al (2020) Single cell transcriptome analysis reveals disease-defining T cell subsets in the tumor microenvironment of classic Hodgkin lymphoma. Cancer Discov 10:406–421

  4. Arlt A, von Bonin F, Rehberg T et al (2020) High CD206 levels in Hodgkin lymphoma-educated macrophages are linked to matrix-remodeling and lymphoma dissemination. Mol Oncol 14:571–589

    Article  PubMed  PubMed Central  Google Scholar 

  5. Baumforth KRN, Birgersdotter A, Reynolds GM et al (2008) Expression of the Epstein-Barr Virus-Encoded Epstein-Barr Virus Nuclear Antigen 1 in Hodgkin’s Lymphoma Cells Mediates Up-Regulation of CCL20 and the Migration of Regulatory T Cells. Am J Pathol 173:195–204

    Article  CAS  Google Scholar 

  6. Cader FZ, Schackmann RCJ, Hu X et al (2018) Mass cytometry of Hodgkin lymphoma reveals a CD4+ regulatory T‑cell-rich and exhausted T‑effector microenvironment. Blood 132:825–836

    Article  CAS  Google Scholar 

  7. Carey CD, Gusenleitner D, Lipschitz M et al (2017) Topological analysis reveals a PD-L1 associated microenvironmental niche for Reed-Sternberg cells in Hodgkin lymphoma. Blood 130:2420–2430

    Article  CAS  Google Scholar 

  8. Cattaruzza L, Gloghini A, Olivo K et al (2009) Functional coexpression of Interleukin (IL)-7 and its receptor (IL-7R) on Hodgkin and Reed-Sternberg cells: Involvement of IL‑7 in tumor cell growth and microenvironmental interactions of Hodgkin’s lymphoma. Int J Cancer 125:1092–1101

    Article  CAS  Google Scholar 

  9. Cesarman E, Roshal M, Reichel J et al (2019) RNA sequencing of Hodgkin lymphoma Reed-Sternberg cells uncovers a plasma cell signature and escape from NK cell recognition. Blood 134:549

    Article  Google Scholar 

  10. Chan FC, Mottok A, Gerrie AS et al (2017) Prognostic model to predict post-autologous stem-cell transplantation outcomes in classical hodgkin lymphoma. J Clin Oncol 35:3722–3733

    Article  CAS  Google Scholar 

  11. Chetaille B, Bertucci F, Finetti P et al (2009) Molecular profiling of classical Hodgkin lymphoma tissues uncovers variations in the tumor microenvironment and correlations with EBV infection and outcome. Blood 113:2765–2775

    Article  CAS  Google Scholar 

  12. Diepstra A, van Imhoff GW, Karim-Kos HE et al (2007) HLA class II expression by Hodgkin Reed-Sternberg cells is an independent prognostic factor in classical Hodgkin’s lymphoma. J Clin Oncol 25:3101–3108

    Article  Google Scholar 

  13. Diepstra A, Poppema S, Boot M et al (2008) HLA‑G protein expression as a potential immune escape mechanism in classical Hodgkin’s lymphoma. Tissue Antigens 71:219–226

    Article  CAS  Google Scholar 

  14. Fischer M, Juremalm M, Olsson N et al (2003) Expression of CCL5/RANTES by Hodgkin and Reed-Sternberg cells and its possible role in the recruitment of mast cells into lymphomatous tissue. Int J Cancer 107:197–201

    Article  CAS  Google Scholar 

  15. Gandhi MK, Lambley E, Duraiswamy J et al (2006) Expression of LAG‑3 by tumor-infiltrating lymphocytes is coincident with the suppression of latent membrane antigen-specific CD8+ T‑cell function in Hodgkin lymphoma patients. Blood 108:2280–2289

    Article  CAS  Google Scholar 

  16. Gholiha AR, Hollander P, Hedstrom G et al (2019) High tumour plasma cell infiltration reflects an important microenvironmental component in classic Hodgkin lymphoma linked to presence of B‑symptoms. Br J Haematol 184:192–201

    Article  CAS  Google Scholar 

  17. Greaves P, Clear A, Owen A et al (2013) Defining characteristics of classical Hodgkin lymphoma microenvironment T‑helper cells. Blood 122:2856–2863

    Article  CAS  Google Scholar 

  18. Green MR, Monti S, Rodig SJ et al (2010) Integrative analysis reveals selective 9p24.1 amplification, increased PD‑1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B‑cell lymphoma. Blood 116:3268–3277

    Article  CAS  Google Scholar 

  19. Hanamoto H, Nakayama T, Miyazato H et al (2004) Expression of CCL28 by Reed-Sternberg cells defines a major subtype of classical Hodgkin’s disease with frequent infiltration of eosinophils and/or plasma cells. Am J Pathol 164:997–1006

    Article  CAS  Google Scholar 

  20. Juskevicius D, Jucker D, Dietsche T et al (2018) Novel cell enrichment technique for robust genetic analysis of archival classical Hodgkin lymphoma tissues. Lab Invest 98:1487–1499

    Article  CAS  Google Scholar 

  21. Juszczynski P, Ouyang J, Monti S et al (2007) The AP1-dependent secretion of galectin‑1 by Reed-Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc Natl Acad Sci 104:13134–13139

    Article  CAS  Google Scholar 

  22. Laks E, McPherson A, Zahn H et al (2019) Clonal Decomposition and DNA Replication States Defined by Scaled Single-Cell Genome Sequencing. Cell 179:1207–1221.e22

    Article  CAS  Google Scholar 

  23. Li W, Blessin NC, Simon R et al (2018) Expression of the immune checkpoint receptor TIGIT in Hodgkin’s lymphoma. BMC Cancer 18:1209

    Article  CAS  Google Scholar 

  24. Liu Y, Sattarzadeh A, Diepstra A et al (2014) The microenvironment in classical Hodgkin lymphoma: an actively shaped and essential tumor component. Semin Cancer Biol 24:15–22

    Article  CAS  Google Scholar 

  25. Mottok A, Steidl C (2015) Genomic alterations underlying immune privilege in malignant lymphomas. Curr Opin Hematol 22:343–354

    Article  CAS  Google Scholar 

  26. Mottok A, Steidl C (2018) Biology of classical Hodgkin lymphoma: Implications for prognosis and novel therapies. Blood 131:1654–1665

    Article  CAS  Google Scholar 

  27. Nijland M, Veenstra RN, Visser L et al (2017) HLA dependent immune escape mechanisms in B‑cell lymphomas: implications for immune checkpoint inhibitor therapy? OncoImmunology 6:e1295202

    Article  Google Scholar 

  28. Ohshima K, Akaiwa M, Umeshita R et al (2001) Interleukin-13 and interleukin-13 receptor in Hodgkin’s disease: possible autocrine mechanism and involvement in fibrosis. Histopathology 38:368–375

    Article  CAS  Google Scholar 

  29. Reichel J, Chadburn A, Rubinstein PG et al (2015) Flow sorting and exome sequencing reveal the oncogenome of primary Hodgkin and Reed-Sternberg cells. Blood 125:1061–1072

    Article  CAS  Google Scholar 

  30. Sánchez-Aguilera A, Montalbán C, de la Cueva P et al (2006) Tumor microenvironment and mitotic checkpoint are key factors in the outcome of classic Hodgkin lymphoma. Blood 108:662–668

    Article  Google Scholar 

  31. Scott DW, Steidl C (2014) The classical Hodgkin lymphoma tumor microenvironment: macrophages and gene expression-based modeling. Hematology Am Soc Hematol Educ Program 2014:144–150

  32. Steidl C, Connors JM, Gascoyne RD (2011) Molecular pathogenesis of Hodgkin’s lymphoma: increasing evidence of the importance of the microenvironment. J Clin Oncol 29:1812–1826

    Article  CAS  Google Scholar 

  33. Steidl C, Lee T, Shah SP et al (2010) Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med 362:875–885

    Article  CAS  Google Scholar 

  34. Steidl C, Shah SP, Woolcock BW et al (2011) MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 471:377–381

    Article  CAS  Google Scholar 

  35. Swerdlow S, Campo E, Harris N, Jaffe E (2017) WHO classification of tumours of haematopoietic and lymphoid tissues, 4. Aufl. IARC Press, Lyon

    Google Scholar 

  36. Teruya-Feldstein J, Tosato G, Jaffe ES (2000) The role of chemokines in Hodgkin’s disease. Leuk Lymphoma 38:363–371

    Article  CAS  Google Scholar 

  37. Tiacci E, Doring C, Brune V et al (2012) Analyzing primary Hodgkin and Reed-Sternberg cells to capture the molecular and cellular pathogenesis of classical Hodgkin lymphoma. Blood 120:4609–4620

    Article  CAS  Google Scholar 

  38. Tiacci E, Ladewig E, Schiavoni G et al (2018) Pervasive mutations of JAK-STAT pathway genes in classical Hodgkin lymphoma. Blood 131:2454–2465

    Article  CAS  Google Scholar 

  39. Wein F, Weniger MA, Höing B et al (2017) Complex immune evasion strategies in classical Hodgkin lymphoma. Cancer Immunol Res 5:1122–1132

    Article  CAS  Google Scholar 

  40. Wienand K, Chapuy B, Stewart C et al (2019) Genomic analyses of flow-sorted Hodgkin Reed-Sternberg cells reveal complementary mechanisms of immune evasion. Blood Adv 3:4065–4080

    Article  Google Scholar 

  41. Yaddanapudi K, Putty K, Rendon BE et al (2013) Control of tumor-associated macrophage alternative activation by macrophage migration inhibitory factor. J Immunol 190:2984–2993

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Mottok.

Ethics declarations

Interessenkonflikt

A. Mottok gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Schwerpunktherausgeber

P. Möller, Ulm

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mottok, A. Tumormikromilieu im klassischen Hodgkin-Lymphom. Pathologe 41, 254–260 (2020). https://doi.org/10.1007/s00292-020-00774-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-020-00774-z

Schlüsselwörter

Keywords

Navigation