Skip to main content
Log in

Knorpeltumoren: Morphologie, Genetik und Basisaspekte der Targettherapie

Cartilage tumors: morphology, genetics, and current aspects of target therapy

  • Schwerpunkt: Tumoren des Knochens und der Gelenke
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Knorpeltumoren sind eine heterogene Gruppe von mesenchymalen Tumoren, deren gemeinsames Charakteristikum die Bildung von chondroblastisch differenzierter Grundsubstanz durch die Tumorzellen ist. Die Grundzüge ihrer histologischen Klassifikation wurden bereits in den 1940er-Jahren entwickelt mit Ergänzungen durch weitere Entitäten in den darauffolgenden Jahrzehnten. Grundlegend neue Erkenntnisse wurden dann erst wieder in den vergangenen 10–15 Jahren durch die molekulargenetische Untersuchung gewonnen. So sind die Osteochondrome durch Alterationen im EXT1- und EXT2-Gen charakterisiert. Besonders wichtig ist die Beschreibung von Mutationen der Isocitratdehydrogenase 1 und 2 (IDH1 und 2) in den Chondromen und Chondrosarkomen. Das mesenchymale Chondrosarkom ist durch eine Fusion der Gene HEY1-NCOA2 charakterisiert. Die für die einzelnen Tumorentitäten charakteristischen, molekulargenetischen Alterationen sind zunächst eine wesentliche Ergänzung für die Differenzialdiagnose radiologisch und histologisch schwieriger Fälle. Sie stellen aber darüber hinaus auch die Grundlage zur Etablierung von molekularen Targettherapien für die malignen chondrogenen Tumoren dar. Dies gilt insbesondere für das konventionelle Chondrosarkom, bei dem sich alle Ansätze zu einer Chemo- und Strahlentherapie als wirkungslos erwiesen haben. Allerdings steht hier der Einsatz von Targettherapien noch in den Anfängen.

Abstract

Cartilage tumors are a heterogeneous group of mesenchymal tumors whose common characteristic is the formation of a chondroblastic differentiated groundsubstance by the tumor cells. The basic features of their histological classification were already developed in the 1940s and supplemented by further entities in the following decades. Only in the past 10–15 years have fundamental new insights been gained through molecular genetic analysis. So, osteochondromas are characterized by alterations in the EXT1 and EXT2 genes. The description of mutations of isocitrate dehydrogenase 1 and 2 (IDH 1 and 2) in chondromas and chondrosarcomas is particularly important. The mesenchymal chondrosarcoma is characterized by a fusion of the HEY1-NCOA2 genes. The molecular genetic alterations characteristic for the individual tumor entities are first of all an essential supplement for the differential diagnosis of radiologically and histologically difficult cases. They also provide the basis for the establishment of molecular target therapies for malignant chondrogenic tumors. This applies in particular to conventional chondrosarcoma, for which all approaches to chemo- and radiotherapy have proven to be ineffective. However, the use of target therapies is still in its beginnings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Aigner T, Dertinger S, Belke J et al (1996) Chondrocytic cell differentiation in clear cell chondrosarcoma. Hum Pathol 27:1301–1305

    CAS  PubMed  Google Scholar 

  2. Amary MF, Bacsi K, Maggiani F et al (2011a) IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol 224:334–343

    CAS  PubMed  Google Scholar 

  3. Amary MF, Damato S, Halai D et al (2011b) Ollier disease and Maffucci syndrome are caused by somatic mosaic mutations of IDH1 and IDH2. Nat Genet 43:1262–1266

    CAS  PubMed  Google Scholar 

  4. Amary MF, Berisha F, Mozela R et al (2016) The H3F3 K36M mutant antibody is a sensitive and specific marker for the diagnosis of chondroblastoma. Histopathology 69:121–127

    PubMed  Google Scholar 

  5. de Andrea CE, Hogendoorn PCW (2012a) Epiphyseal growth plate and secondary peripheral chondrosarcoma: the neighbours matter. J Pathol 226:219–228

    PubMed  Google Scholar 

  6. de Andrea CE, Reijnders CMA, Kroon HM et al (2012b) Secondary peripheral chondrosarcoma evolving from osteochondroma as a result of outgrowth of cells with functional EXT. Oncogene 31:1095–1104

    PubMed  Google Scholar 

  7. de Andrea CE, Wiweger MI, Bovée JVMG et al (2012c) Peripheral chondrosarcoma progression is associated with increased type X collagen and vascularisation. Virchows Arch 460:95–102

    CAS  PubMed  Google Scholar 

  8. de Andrea CE, Zhu JF, Jin H et al (2015) Cell cycle deregulation and mosaic loss of Ext1 drive peripheral chondrosarcomagenesis in the mouse and reveal an intrinsic cilia deficiency. J Pathol 236:210–218

    PubMed  PubMed Central  Google Scholar 

  9. de Andrea CE, San-Julian M (2017) Integrating morphology and genetics in the diagnosis of cartilage tumors. Surg Pathol Clin 10:537–552

    PubMed  Google Scholar 

  10. Baumhoer D, Amary F, Flanagan AM (2019) An update of molecular pathology of bone tumors. Lessons learned from investigating samples by next generation sequencing. Genes Chromosomes Cancer 58:88–99

    CAS  PubMed  Google Scholar 

  11. Bjornsson J, Unni KK, Dahlin DC et al (1984) Clear cell chondrosarcoma of bone: observations in 47 cases. Am J Surg Pathol 8:23–230

    Google Scholar 

  12. Bosse A, Ueda Y, Wuisman P, Jones DB et al (1991) Histogenesis of clear cell chondrosarcoma—an immunohistochemical study with osteonectin, a non-collagenous structure protein. J Cancer Res Clin Oncol 117:43–49

    CAS  PubMed  Google Scholar 

  13. de Botton S, Mondesir J, Willekens C et al (2016) IDH1 and IDH2 mutations as novel therapeutic targets: current perspectives. J Blood Med 7:171–180

    PubMed  PubMed Central  Google Scholar 

  14. Bovée JVMG, Cleton-Jansen AM, Rosenberg C et al (1999) Molecular genetic characterization of both components of a dedifferentiated chondrosarcoma, with implications for its histogenesis. J Pathol 189:454–462

    PubMed  Google Scholar 

  15. Bovée JVMG, Cleton-Jansen AM, Wuyts W et al (1999) EXT-mutation analysis and loss of heterozygosity in sporadic and hereditary osteochondromas and secondary chondrosarcomas. Am J Med Genet A 65:689–698

    Google Scholar 

  16. Bovée JVMG, Hogendoorn PCW, Wunder JS et al (2010) Cartilage tumours and bone development: molecular pathology and possible therapeutic targets. Nat Rev Cancer 10:481–488

    PubMed  Google Scholar 

  17. Bovée JVMG, Cleton-Jansen AM, Taminiau AHM et al (2005) Emerging pathways in the development of chondrosarcoma of bone and implications for targeted treatment. Lancet Oncol 6:599–607

    PubMed  Google Scholar 

  18. Bruns J, Fiedler W, Werner M et al (2005) Dedifferentiated chondrosarcoma—a fatal disease. J Cancer Res Clin Oncol 131:333–339

    CAS  PubMed  Google Scholar 

  19. Busse M, Feta A, Presto J et al (2007) Contribution of EXT1, EXT2, and EXTL3 to heparan sulfate chain elongation. J Biol Chem 282:32802–32810

    CAS  PubMed  Google Scholar 

  20. Campbell VT, Nadesan P, Ali SA et al (2014) Hedgehog pathway inhibition in chondrosarcoma using the smoothened inhibitor IPI-926 directly inhibits sarcoma cell growth. Mol Cancer Ther 13:1259–1269

    CAS  PubMed  Google Scholar 

  21. Cajaiba MM, Luo J, Goodman MA et al (2010) Sox 9 expression is not limited to chondroid neoplasms: variable occurrence in other soft tissue and bone tumors with frequent expression by synovial sarcomas. Int J Surg Pathol 18:319–323

    CAS  PubMed  Google Scholar 

  22. Chen S, Fritchie K, Wei S et al (2017) Diagnostic utility of IDH1/2 mutations to distinguish dedifferentiated chondrosarcoma from undifferentiated pleomorphic sarcoma of bone. Hum Pathol 65:239–246

    CAS  PubMed  Google Scholar 

  23. Cheung PK, McCormick C, Crawford BE, Esko JD, Tufaro F, Duncan G (2002) Etiological point mutations in the hereditary multiple exostoses gene EXT1: a functional analysis of heparan sulfate polymerase activity. Am J Med Genet A 69:55–66

    Google Scholar 

  24. Dahlin DC, Henderson ED (1956) Chondrosarcoma, a surgical and pathological problem. J Bone Joint Surg Am 38-A:1025–1038

    CAS  PubMed  Google Scholar 

  25. Damato S, Alorjani M, Bonar F et al (2012) IDH1 mutations are not found in cartilaginous tumours other than central and periosteal chondrosarcomas and enchondromas. Histopathology 60:363–365

    PubMed  Google Scholar 

  26. Dickey ID, Rose PS, Fuchs B et al (2004) Dedifferentiated chondrosarcoma: the role of chemotherapy with updated outcomes. J Bone Joint Surg Am 86:2412–2418

    PubMed  Google Scholar 

  27. Eefting D, Schrage YM, Geirnaerdt MJA et al (2009) Assessment of interobserver variability and histologic parameters to improve reliability in classification and grading of central cartilaginous tumors. Am J Surg Pathol 33:50–57

    PubMed  Google Scholar 

  28. Estrada EG, Ayala AG, Valerie L et al (2002) Dedifferentiated chondrosarcoma with a noncartilaginous component mimicking a conventional giant cell tumor of bone. Ann Diagn Pathol 6:159–163

    PubMed  Google Scholar 

  29. Evans HL, Ayala AG, Romsdahl MM (1977) Prognostic factors in chondrosarcoma of bone. A clinicopathologic analysis with emphasis on histologic grading. Cancer 40:818–831

    CAS  PubMed  Google Scholar 

  30. Ewerbeck V, Mau H (1995) Differential diagnosis of benign bone tumors. Clinical aspects and imaging procedures. Orthopade 24:15–23

    CAS  PubMed  Google Scholar 

  31. Fletcher CDM (2013) WHO classification of tumours of soft tissue and bone, 4. Aufl. International Agency for Research on Cancer, Lyon (France)

    Google Scholar 

  32. Gao L, Hong X, Guo X et al (2016) Targeted next-generation sequencing of dedifferentiated chondrosarcoma in the skull base reveals combined TP53 and PTEN mutations with increased proliferation index, an implication for pathogenesis. Oncotarget 7:9618

    Google Scholar 

  33. Goto T, Motoi T, Komiya K et al (2003) Chondrosarcoma of the hand secondary to multiple enchondromatosis; report of two cases. Arch Orthop Trauma Surg 123:42–47

    PubMed  Google Scholar 

  34. Grote HJ, Schneider-Stock R, Neumann W et al (2000) Mutation of p53 with loss of heterozygosity in the osteosarcomatous component of a dedifferentiated chondrosarcoma. Virchows Arch 436:494–497

    CAS  PubMed  Google Scholar 

  35. Hameetman L, Szuhai K, Yavas A et al (2007) The role of EXT1 in nonhereditary osteochondroma: Identification of homozygous deletions. J Natl Cancer Inst 99:396–406

    CAS  PubMed  Google Scholar 

  36. Hickey M, Farrokhyar F, Deheshi B et al (2011) A systematic review and meta-analysis of intralesional versus wide resection for intramedullary grade in chondrosarcoma of the extremities. Ann Surg Oncol 18:1705–1709

    PubMed  Google Scholar 

  37. Huvos AG, Rosen G, Dabska M (1983) Mesenchymal chondrosarcoma a clinicopathologic analysis of 35 patients with emphasis on treatment. Cancer 51:1230–1237

    CAS  PubMed  Google Scholar 

  38. Ishida T, Kikuchi F, Machinami R (1991) Histological grading and morphometric analysis of cartilaginous tumours. Virchows Arch A Pathol Anat Histopathol 418:149–155

    CAS  PubMed  Google Scholar 

  39. Iso T, Kedes L, Hamamori Y (2003) HES and HERP families: multiple effectors of the notch signaling pathway. J Cell Physiol 194:237–255

    CAS  PubMed  Google Scholar 

  40. Karsenty G, Wagner EF (2002) Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2:389–406

    CAS  PubMed  Google Scholar 

  41. Kerr DA, Lopez HU, Deshpande V et al (2013) Molecular distinction of chondrosarcoma from chondroblastic osteosarcoma through IDH1/2 mutations. Am J Surg Pathol 37:787–795

    PubMed  Google Scholar 

  42. Kitsoulis P, Galani V, Stefanaki K et al (2008) Osteochondromas: review of the clinical, radiological and pathological features. In Vivo 22:633–646

    PubMed  Google Scholar 

  43. Kostine M, Cleven AHG, de Miranda NFCC et al (2016) Analysis of PD-L1, T‑cell infiltrate and HLA expression in chondrosarcoma indicates potential for response to immunotherapy specifically in the dedifferentiated subtype. Mod Pathol 29:1028–1037

    CAS  PubMed  Google Scholar 

  44. Lam SW, van Langevelde K, Suurmeijer AJ (2019) Conventional chondrosarcoma with focal clear cell change: a clinicopathological and molecular analysis. Histopathology 75(6):843–852. https://doi.org/10.1111/his.13952

    Article  PubMed  PubMed Central  Google Scholar 

  45. Li L, Paz AC, Wilky BA et al (2015) Treatment with a small molecule mutant IDH1 inhibitor suppresses tumorigenic activity and decreases production of the oncometabolite 2‑hydroxyglutarate in human chondrosarcoma cells. PLoS ONE 10:1–19

    Google Scholar 

  46. Lichtenstein L, Bernstein D (1959) Unusual benign and malignant chondroid tumors of bone. A survey of some mesenchymal cartilage tumors and malignant chondroblastic tumors, including a few multicentric ones, as well as many atypical benign chondroblastomas and chondromyxoid fibromas. Cancer 12:1142–1157

    Google Scholar 

  47. Luo J, Manning BD, Cantley LC (2003) Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 4:257–262

    CAS  PubMed  Google Scholar 

  48. Makise N, Sekimizu M, Konishi E (2019) H3K27me3 deficiency defines a subset of dedifferentiated chondrosarcomas with characteristic clinicopathological features. Mod Pathol 32:435–445

    CAS  PubMed  Google Scholar 

  49. Matsumoto K, Irie F, Mackem S (2010) A mouse model of chondrocyte-specific somatic mutation reveals a role for Ext1 loss of heterozygosity in multiple hereditary exostoses. Proc Natl Acad Sci USA 107:10932–10937

    CAS  PubMed  PubMed Central  Google Scholar 

  50. McCarthy C, Anderson WJ, Vlychou M et al (2016) Primary synovial chondromatosis: a reassessment of malignant potential in 155 cases. Skeletal Radiol 45:755–762

    CAS  PubMed  Google Scholar 

  51. Meijer D, de Jong D, Pansuriya TC (2012) Genetic characterization of mesenchymal, clear cell, and dedifferentiated chondrosarcoma. Genes Chromosomes Cancer 51:899–909

    CAS  PubMed  Google Scholar 

  52. Mirra JM, Gold R, Downs J et al (1985) A new histologic approach to the differentiation of enchondroma and chondrosarcoma of the bones. Clin Orthop Relat Res 201:214–237

    Google Scholar 

  53. Mitchell AD, Ayoub K, Mangham DC et al (2000) Experience in the treatment of dedifferentiated chondrosarcoma. J Bone Joint Surg Br 82:55–61

    CAS  PubMed  Google Scholar 

  54. Pacifici M (2017) Hereditary multiple exostoses: new insights into pathogenesis, clinical complications, and potential treatments. Curr Osteoporos Rep 15:142–152

    PubMed  PubMed Central  Google Scholar 

  55. Pannier S, Legeai-Mallet L (2008) Hereditary multiple exostoses and enchondromatosis. Best Pract Res Clin Rheumatol 22:45–54

    CAS  PubMed  Google Scholar 

  56. Pansuriya TC, Kroon HM, Bovee JV (2010) Enchondromatosis: insights on the different subtypes. Int J Clin Exp Pathol 3:557–569

    PubMed  PubMed Central  Google Scholar 

  57. Pansuriya TC, van Eijk R, Kuijjer L (2012) Somatic mosaic IDH1 or IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome. Nat Genet 43:1256–1261

    Google Scholar 

  58. Perez J, Decouvelaere AV, Pointecouteau T et al (2012) Inhibition of chondrosarcoma growth by mTOR inhibitor in an in vivo syngeneic rat model. PLoS One 7:e32458

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Polychronidou G, Karavasilis V, Pollack SM et al (2017) Novel therapeutic approaches in chondrosarcoma. Future Oncol 13:637–648

    CAS  PubMed  Google Scholar 

  60. Polivka J Jr, Janku F (2014) Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther 142:164–175

    CAS  PubMed  Google Scholar 

  61. Porta C, Paglino C, Mosca A (2014) Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol 4:1–11

    Google Scholar 

  62. Reijnders CMA, Waaijer CF, Hamilton A et al (2010) No haploinsufficiency but loss of heterozygosity for EXT in multiple osteochondromas. Am J Pathol 177:1946–1957

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Röpke M, Boltze C, Neumann HW et al (2003) Genetic and epigenetic alterations in tumor progression in a dedifferentiated chondrosarcoma. Pathol Res Pract 199:437–444

    PubMed  Google Scholar 

  64. Rubin LL, de Sauvage FJ (2006) Targeting the hedgehog pathway in cancer. Nat Rev Drug Discov 5:1026–1033

    CAS  PubMed  Google Scholar 

  65. Sakimura R, Tanaka K, Yamamoto S et al (2007) The effects of histone deacetylase inhibitors on the induction of differentiation in chondrosarcoma cells. Clin Cancer Res 13:275–282

    CAS  PubMed  Google Scholar 

  66. Schmale GA, Conrad EU, Raskind WH (1994) The natural history of hereditary multiple exostoses. J Bone Joint Surg Am 76:986–992

    CAS  PubMed  Google Scholar 

  67. Speetjens FM, de Jong Y, Gelderblom H et al (2016) Molecular oncogenesis of chondrosarcoma. Curr Opin Oncol 28:314–322

    CAS  PubMed  Google Scholar 

  68. Suijker J, Oosting J, Koornneef A et al (2015) Inhibition of mutant IDH1 decreases D‑2-HG levels without affecting tumorigenic properties of chondrosarcoma cell lines. Oncotarget 6:12505–12519

    PubMed  PubMed Central  Google Scholar 

  69. Tarpey PS, Behjati S, Cooke SL et al (2013) Frequent mutation of the major cartilage collagen gene COL2A1 in chondrosarcoma. Nat Genet 45:923–926

    CAS  PubMed  PubMed Central  Google Scholar 

  70. The I, Bellaiche Y, Perrimon N (1999) Hedgehog movement is regulated through tout velu—dependent synthesis of a heparan sulfate proteoglycan. Mol Cell 4:633–639

    CAS  PubMed  Google Scholar 

  71. Tiet TD, Hopyan S, Nadesan P et al (2006) Constitutive hedgehog signaling in chondrosarcoma up-regulates tumor cell proliferation. Am J Pathol 168:321–330

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Walaas L, Kindblom LG, Gunterberg B et al (1990) Light and electron microscopic examination of fine-needle aspirates in the preoperative diagnosis of cartilaginous tumors. Diagn Cytopathol 6:396–408

    CAS  PubMed  Google Scholar 

  73. Wang L, Motoi T, Khanin R et al (2012) Identification of a novel, recurrent HEY1-NCOA2 fusion in mesenchymal chondrosarcoma based on a genome-wide screen of exon-level expression data. Genes Chromosomes Cancer 51:127–139

    CAS  PubMed  Google Scholar 

  74. Wehrli BM, Huang W, De Crombrugghe B (2003) Sox9, a master regulator of chondrogenesis, distinguishes mesenchymal chondrosarcoma from other small blue round cell tumors. Hum Pathol 34:263–269

    CAS  PubMed  Google Scholar 

  75. Welkerling H, Dreyer T, Delling G (1991) Morphological typing of chondrosarcoma: a study of 94 cases. Virchows Arch A Pathol Anat Histopathol 418:419–425

    CAS  PubMed  Google Scholar 

  76. Wuyts W, Van Hul W, De Boulle K (2002) Mutations in the EXT1 and EXT2 genes in hereditary multiple exostoses. Am J Hum Genet 62:346–354

    Google Scholar 

  77. Xu J, Li Q (2003) Review of the in vivo functions of the p160 steroid receptor coactivator family. Mol Endocrinol 17:1681–1692

    CAS  PubMed  Google Scholar 

  78. Xu W, Yang H, Liu Y et al (2011) Oncometabolite 2‑hydroxyglutarate is a competitive inhibitor of α‑ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Yan H, Parsons W, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Yen KE, Schenkein DP (2012) Cancer-associated isocitrate dehydrogenase mutations. Oncologist 17:5–8

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang Y, Kalderon D (2001) Hedgehog acts as a somatic stem cell factor in the drosophila ovary. Nature 410:599–604

    CAS  PubMed  Google Scholar 

  82. Zhang YX, van Oosterwijk JG, Sicinska E (2013) Functional profiling of receptor tyrosine kinases and downstream signaling in human chondrosarcomas identifies pathways for rational targeted therapy. Clin Cancer Res 19:3796–3807

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Roessner.

Ethics declarations

Interessenkonflikt

A. Roessner, M. Smolle, V. Schoeder und J. Haybaeck geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Schwerpunktherausgeber

A. Rössner, Magdeburg

J. Haybäck, Magdeburg

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roessner, A., Smolle, M., Schoeder, V. et al. Knorpeltumoren: Morphologie, Genetik und Basisaspekte der Targettherapie. Pathologe 41, 143–152 (2020). https://doi.org/10.1007/s00292-020-00752-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-020-00752-5

Schlüsselwörter

Keywords

Navigation