Skip to main content
Log in

Von der Paneldiagnostik zu umfassenden genomischen Analysen

Informationsüberfluss oder Zugewinn?

From panel diagnostics to comprehensive genomic analysis

Infobesity or empowerment?

  • Schwerpunkt: Präzisionsonkologie
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Die Präzisionsonkologie spielt eine zunehmend wichtigere Rolle in der Therapie maligner Erkrankungen. Die Indikationsstellung zielgerichteter Therapien bedarf hierbei der molekularpathologischen Aufarbeitung des Tumorgewebes. Dies geschieht derzeit üblicherweise mittels gezielter Panelsequenzierung (Next Generation Sequencing) durch die – in Abhängigkeit vom Paneldesign und der verwendeten Methode – alle für die Therapieentscheidung relevanten zugelassenen prädiktiven Biomarker oder therapeutischen Zielstrukturen untersucht werden können. Dies schließt auch Genfusionen und Kopienzahlveränderungen ein. Gleichwohl gibt es klinische Szenarien, in denen umfassendere genomische Ansätze (Ganzexom- oder Ganzgenom- sowie Transkriptomanalysen) erwogen werden können. Diese müssen in einen Studienkontext eingebunden sein. Die vorliegende Übersicht beschreibt Kernaspekte der jeweiligen Profilingverfahren und zeigt mögliche Anwendungsgebiete auf.

Abstract

Precision oncology is obtaining a central role in the therapy of malignant diseases. The indication for targeted therapy is based on the identification of molecular targets for which next-generation sequencing (NGS) is commonly used nowadays. All approved predictive biomarkers and molecular targets, including gene fusions and copy number alterations, can be identified depending on panel design and method applied. Some clinical scenarios, however, may require more holistic genomic approaches, such as whole-genome/whole-exome and transcriptome analysis, which must be embedded in a clinical trial. Here, key aspects and applications of each method are summarized and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Alexandrov LB, Nik-Zainal S, Wedge DC et al (2013) Signatures of mutational processes in human cancer. Nature 500:415–421

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Allgäuer M, Budczies J, Christopoulos P et al (2018) Implementing tumor mutational burden (TMB) analysis in routine diagnostics—A primer for molecular pathologists and clinicians. Transl Lung Cancer Res 7(5):703–715

    Article  PubMed  PubMed Central  Google Scholar 

  3. Buchhalter I, Rempel E, Endris V et al (2018) Size matters: Dissecting key parameters for panel-based tumor mutational burden (TMB) analysis. Int J Cancer 144(4):848–858

    Article  PubMed  Google Scholar 

  4. Cerami E, Gao J, Dogrusoz U et al (2012) The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404

    Article  PubMed  Google Scholar 

  5. Chae YK, Vaklavas C, Cheng HH et al (2018) Molecular analysis for therapy choice (MATCH) arm W: Phase II study of AZD4547 in patients with tumors with aberrations in the FGFR pathway. J Clin Oncol 36:2503–2503

    Article  Google Scholar 

  6. Chan TA, Yarchoan M, Jaffee E et al (2019) Development of tumor mutation burden as an immunotherapy biomarker: Utility for the oncology clinic. Ann Oncol 30:44–56

    Article  CAS  PubMed  Google Scholar 

  7. Christopoulos P, Dietz S, Kirchner M et al (2019) Detection of TP53 mutations in tissue or liquid rebiopsies at progression identifies ALK+ lung cancer patients with poor survival. Cancers (Basel) 11(1):124

    Article  Google Scholar 

  8. Christopoulos P, Endris V, Bozorgmehr F et al (2018) EML4-ALK fusion variant V3 is a high-risk feature conferring accelerated metastatic spread, early treatment failure and worse overall survival in ALK+ non-small cell lung cancer. Int J Cancer 142:2589–2598

    Article  CAS  PubMed  Google Scholar 

  9. Christopoulos P, Kirchner M, Endris V et al (2018) EML4-ALK V3, treatment resistance, and survival: Refining the diagnosis of ALK+ NSCLC. J Thorac Dis 10(S16):S1989–S1991

    Article  PubMed  PubMed Central  Google Scholar 

  10. Deutsche Krebsgesellschaft (DK), AWMF (2018) S3-Leitlinie Prävention, Diagnostik, Therapie und Nachsorge des Lungenkarzinoms

    Google Scholar 

  11. D’haene N, Fontanges Q, De Nève N et al (2018) Clinical application of targeted next-generation sequencing for colorectal cancer patients: A multicentric Belgian experience. Oncotarget 9:20761–20768

    Article  PubMed  PubMed Central  Google Scholar 

  12. Drilon A, Laetsch TW, Kummar S et al (2018) Efficacy of larotrectinib in TRK fusion–Positive cancers in adults and children. N Engl J Med 378:731–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Endris V, Buchhalter I, Allgäuer M et al (2018) Determination of tumor mutational burden using FFPE material: Content and performance comparison of different gene panels. J Clin Oncol 36:e15010–e15010

    Article  Google Scholar 

  14. Endris V, Buchhalter I, Allgäuer M et al (2019) Measurement of tumor mutational burden (TMB) in routine molecular diagnostics: In silico and real-life analysis of three larger gene panels. Int J Cancer. https://doi.org/10.1002/ijc.32002

    Article  PubMed  Google Scholar 

  15. Golan T, Varadhachary GR, Sela T et al (2018) Phase II study of olaparib for BRCAness phenotype in pancreatic cancer. J Clin Oncol 36:297–297

    Article  Google Scholar 

  16. Grimm C, Fischer A, Farrelly AM et al (2019) Combined targeted resequencing of cytosine DNA methylation and mutations of DNA repair genes with potential use for poly(ADP-ribose) polymerase 1 inhibitor sensitivity testing. J Mol Diagn 21:198–213

    Article  CAS  PubMed  Google Scholar 

  17. Gröschel S, Hübschmann D, Raimondi F et al (2019) Defective homologous recombination DNA repair as therapeutic target in advanced chordoma. Nat Commun. https://doi.org/10.1038/s41467-019-09633-9

    Article  PubMed  PubMed Central  Google Scholar 

  18. Heining C, Horak P, Gröschel S et al (2016) Personalisierte Medizin: Strukturen, Tumorboards, Visionen. Med Genet 28:452–459

    CAS  Google Scholar 

  19. Heining C, Horak P, Uhrig S et al (2018) NRG1 fusions in KRAS wild-type pancreatic cancer. Cancer Discov 8:1087–1095

    Article  CAS  PubMed  Google Scholar 

  20. Hodgson DR, Dougherty BA, Lai Z et al (2018) Candidate biomarkers of PARP inhibitor sensitivity in ovarian cancer beyond the BRCA genes. Br J Cancer 119:1401–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Horak P, Klink B, Heining C et al (2017) Precision oncology based on omics data: The NCT Heidelberg experience. Int J Cancer 141:877–886

    Article  CAS  PubMed  Google Scholar 

  22. Huang MN, Yu W, Teoh WW et al (2017) Genome-scale mutational signatures of aflatoxin in cells, mice, and human tumors. Genome Res 27:1475–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hyman DM, Puzanov I, Subbiah V et al (2015) Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med 373:726–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hyman DM, Smyth LM, Donoghue MTA et al (2017) AKT inhibition in solid tumors with AKT1 mutations. J Clin Oncol 35:2251–2259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jesinghaus M, Pfarr N, Endris V et al (2016) Genotyping of colorectal cancer for cancer precision medicine: Results from the IPH center for molecular pathology. Genes Chromosomes Cancer 55:505–521

    Article  CAS  PubMed  Google Scholar 

  26. Jhaveri K, Juric D, Saura C et al (2018) Abstract CT046: A phase I basket study of the PI3K inhibitor taselisib (GDC-0032) in PIK3CA-mutated locally advanced or metastatic solid tumors. Cancer. https://doi.org/10.1158/1538-7445.AM2018-CT046

    Article  PubMed  Google Scholar 

  27. Kaley T, Touat M, Subbiah V et al (2018) BRAF inhibition in BRAF(V600)-mutant gliomas: Results from the VE-BASKET Study. J Clin Oncol 36(35):3477–3484

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kuo FC, Mar BG, Lindsley RC et al (2017) The relative utilities of genome-wide, gene panel, and individual gene sequencing in clinical practice. Blood 130:433–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lassen UN, Albert CM, Kummar S et al (2018) 409OLarotrectinib efficacy and safety in TRK fusion cancer: An expanded clinical dataset showing consistency in an age and tumor agnostic approach. Ann Oncol. https://doi.org/10.1093/annonc/mdy279.397

    Article  PubMed  Google Scholar 

  30. Leichsenring J, Horak P, Kreutzfeld S et al (2019) Somatic variant interpretation in precision oncology. Int J Cancer. https://doi.org/10.1002/ijc.32358

    Article  PubMed  Google Scholar 

  31. Leichsenring J, Stögbauer F, Volckmar A‑L et al (2018) Genetic profiling of melanoma in routine diagnostics: Assay performance and molecular characteristics in a consecutive series of 274 cases. Pathology 50(7):703–710

    Article  CAS  PubMed  Google Scholar 

  32. Leichsenring J, Volckmar A‑L, Kirchner M et al (2018) Targeted deep sequencing of effusion cytology samples is feasible, informs spatiotemporal tumor evolution, and has clinical and diagnostic utility. Genes Chromosomes Cancer 57:70–79

    Article  CAS  PubMed  Google Scholar 

  33. Lier A, Penzel R, Heining C et al (2018) Validating comprehensive next-generation sequencing results for precision oncology: The NCT/DKTK molecularly aided stratification for tumor eradication research experience. JCO Precis Oncol. https://doi.org/10.1200/po.18.00171

    Article  PubMed  Google Scholar 

  34. Lindeman NI, Cagle PT, Aisner DL et al (2018) Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors. J Mol Diagn 20:129–159

    Article  CAS  PubMed  Google Scholar 

  35. Longerich T, Endris V, Neumann O et al (2019) RSPO2 gene rearrangement: A powerful driver of β‑catenin activation in liver tumours. Gut. https://doi.org/10.1136/gutjnl-2018-317632

    Article  PubMed  Google Scholar 

  36. Lord CJ, Ashworth A (2016) BRCAness revisited. Nat Rev Cancer 16(2):110–120

    Article  CAS  PubMed  Google Scholar 

  37. Luoh SW, Flaherty KT (2018) When tissue is no longer the issue: Tissue-agnostic cancer therapy comes of age. Ann Intern Med 169:233–239

    Article  PubMed  Google Scholar 

  38. Ma J, Setton J, Lee NY et al (2018) The therapeutic significance of mutational signatures from DNA repair deficiency in cancer. Nat Commun 9:3292

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mardis ER (2010) The $1,000 genome, the $100,000 analysis? Genome Med 2:84

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mateo J, Carreira S, Sandhu S et al (2015) DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med 373:1697–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mertens F, Johansson B, Fioretos T et al (2015) The emerging complexity of gene fusions in cancer. Nat Rev Cancer 15:371–381

    Article  CAS  PubMed  Google Scholar 

  42. Moore K, Colombo N, Scambia G et al (2018) Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med 379:2495–2505

    Article  CAS  PubMed  Google Scholar 

  43. Nakagawa H, Fujita M (2018) Whole genome sequencing analysis for cancer genomics and precision medicine. Cancer Sci 109:513–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Oddo D, Sennott EM, Barault L et al (2016) Molecular landscape of acquired resistance to targeted therapy combinations in BRAF mutant colorectal cancer. Cancer Res 76(15):4504–4515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pfarr N, Stenzinger A, Penzel R et al (2015) High-throughput diagnostic profiling of clinically actionable gene fusions in lung cancer. Genes Chromosomes Cancer 55(1):30–44

    Article  PubMed  Google Scholar 

  46. Phillips KA, Pletcher MJ, Ladabaum U (2015) Is the “$1000 Genome” really $1000? Understanding the full benefits and costs of genomic sequencing. Technol Health Care 23:373–379

    Article  PubMed  PubMed Central  Google Scholar 

  47. Plon SE, Eccles DM, Easton D et al (2008) Sequence variant classification and reporting: Recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum Mutat 29:1282–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rizvi NA, Hellmann MD, Snyder A et al (2015) Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Robbe P, Popitsch N, Knight SJL et al (2018) Clinical whole-genome sequencing from routine formalin-fixed, paraffin-embedded specimens: Pilot study for the 100,000 Genomes Project. Genet Med 20:1196–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Swisher E, Harrell M, Lin KK et al (2017) Abstract AP28: BRCA1 and RAD51C promoter hypermethylation confer sensitivity to PARP inhibitors in patients with platinum sensitive ovarian carcinoma. Clin Cancer Res. https://doi.org/10.1158/1557-3265.ovcasymp16-ap28

    Article  PubMed  PubMed Central  Google Scholar 

  51. Turnbull C, Scott RH, Thomas E et al (2018) The 100 000 Genomes Project: Bringing whole genome sequencing to the NHS. BMJ 361:k1687

    Article  PubMed  Google Scholar 

  52. Volckmar AL, Leichsenring J, Kirchner M et al (2019) Combined targeted DNA and RNA sequencing of advanced NSCLC in routine molecular diagnostics: Analysis of the first 3,000 Heidelberg cases. Int J Cancer. https://doi.org/10.1002/ijc.32133

    Article  PubMed  Google Scholar 

  53. Zehir A, Benayed R, Shah RH et al (2017) Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med 23:703–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Stenzinger.

Ethics declarations

Interessenkonflikt

J. Leichsenring, D. Kazdal, C. Ploeger, M. Allgäuer, V. Endris, A.-L. Volckmar, O. Neumann, M. Kirchner, R. Penzel, E. Rempel, J. Budczies, P. Schirmacher, S. Fröhling und A. Stenzinger geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Schwerpunktherausgeber

K. W. Schmid, Essen

H. A. Baba, Essen

H.-U. Schildhaus, Essen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leichsenring, J., Kazdal, D., Ploeger, C. et al. Von der Paneldiagnostik zu umfassenden genomischen Analysen. Pathologe 40, 235–242 (2019). https://doi.org/10.1007/s00292-019-0608-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-019-0608-1

Schlüsselwörter

Keywords

Navigation