Skip to main content
Log in

Kindliche Tumoren mit Spindelzellmorphologie

Pediatric tumors with spindle cell morphology

  • Schwerpunkt: Sarkome
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Spindelzellige Tumoren des Kindesalters sind seltene Läsionen mit heterogenem morphologischen Bild und klinischen Verlauf, wobei das Spektrum von benignen Tumoren, Läsionen mit intermediärer Malignität bis hin zu malignen Tumoren reicht. Klinisch macht die Beurteilung dieser Tumoren immer wieder Schwierigkeiten, da zum einen sehr schnell wachsende Läsionen benignen Tumoren entsprechen und langsam wachsende Tumoren maligne Entitäten darstellen können. Aufgrund der Seltenheit dieser Entitäten, der sich oft ähnelnden Morphologie sowie der teils uncharakteristischen immunhistochemischen Profile bereiten diese Tumoren auch den Pathologen immer wieder diagnostische Schwierigkeiten. Im Rahmen dieser Übersicht sollen neben der Morphologie und den spezifischen immunhistochemischen Aspekten auch auf die molekularen Veränderungen eingegangen werden. Zudem werden auch die neu beschriebenen Translokationen einiger Tumorentitäten besprochen, da sie teilweise auch therapeutische Optionen implizieren.

Abstract

Spindle cell tumors in childhood are rare lesions with a heterogeneous morphological picture and clinical course, ranging from benign lesions to fully malignant tumors. The clinical assessment of these tumors is often challenging since some of them show fast growth dynamics but are utterly benign, while a subset of slow-growing tumors can represent malignant entities. Due to the rarity of these tumors as well as the overlapping morphology and the often uncharacteristic immunohistochemical profiles, the pathologic diagnosis is often also difficult. This review gives an overview of some of the more common pediatric spindle cell tumors. In addition to the morphological features and immunohistochemical aspects, specific molecular changes are discussed. Here, some of the newly described translocations that may imply therapeutic options, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Shimizu S, Hashimoto H, Enjoji M (1984) Nodular fasciitis: an analysis of 250 patients. Pathology 16:161–166

    Article  CAS  Google Scholar 

  2. Montgomery EA, Meis JM (1991) Nodular fasciitis: its morphologic spectrum and immunohistochemical profile. Am J Surg Pathol 15:942–948

    Article  CAS  Google Scholar 

  3. Bernstein KE, Lattes R (1982) Nodular (pseudosarcomatous) fasciitis, a nonrecurrent lesion: clinicopathologic study of 134 cases. Cancer 49(8):1668–1678

    Article  CAS  Google Scholar 

  4. Erickson-Johnson MR, Chou MM, Evers BR, Roth CW, Seys AR, Jin L, Ye Y, Lau AW, Wang X, Oliveira AM (2011) Nodular fasciitis: a novel model of transient neoplasia induced by MYH9-USP6 gene fusion. Lab Invest 91(10):1427–1433

    Article  CAS  Google Scholar 

  5. Amary MF, Ye H, Berisha F, Tirabosco R, Presneau N, Flanagan AM (2013) Detection of USP6 gene rearrangement in nodular fasciitis: an important diagnostic tool. Virchows Arch 463(1):97–98

    Article  Google Scholar 

  6. Shin C, Low I, Ng D, Oei P, Miles C, Symmans P (2016) USP6 gene rearrangement in nodular fasciitis and histological mimics. Histopathology 69(5):784–791

    Article  Google Scholar 

  7. Chung EB, Enzinger FM (1981) Infantile myofibromatosis. Cancer 48:1807–1818

    Article  CAS  Google Scholar 

  8. Matthews MR, Cockerell CJ (2006) An historic perspective of infantile myofibromatosis. Adv Dermatol 22:279–305

    Article  Google Scholar 

  9. Oudijk L, den Bakker MA, Hop WCJ, Cohen M, Charles AK, Alaggio R, Coffin CM, de Krijger RR (2012) Solitary, multifocal and generalized myofibromas: clinicopathological and immunohistochemical features of 114 cases. Histopathology 60:E1–E11

    Article  Google Scholar 

  10. Zand DJ, Huff D, Everman D, Russell K, Saitta S, McDonald-McGinn D, Zackai EH (2004) Autosomal dominant inheritance of infantile myofibromatosis. Am J Med Genet A 126A(2004):261–266 (thol 1998; 22:513–525)

    Article  Google Scholar 

  11. Martignetti JA, Tian L, Li D, Ramirez MC, Camacho-Vanegas O, Camacho SC, Guo Y, Zand DJ, Bernstein AM, Masur SK, Kim CE, Otieno FG, Hou C, Abdel-Magid N, Tweddale B, Metry D, Fournet JC, Papp E, McPherson EW, Zabel C, Vaksmann G, Morisot C, Keating B, Sleiman PM, Cleveland JA, Everman DB, Zackai E, Hakonarson H (2013) Mutations in PDGFRB cause autosomal-dominant infantile by myofibromatosis. Am J Hum Genet 92:1001–1007

    Article  CAS  Google Scholar 

  12. Agaimy A, Bieg M, Michal M, Geddert H, Märkl B, Seitz J, Moskalev EA, Schlesner M, Metzler M, Hartmann A, Wiemann S, Michal M, Mentzel T, Haller F (2017) Recurrent somatic PDGFRB mutations in sporadic infantile/solitary adult Myofibromas but not in Angioleiomyomas and Myopericytomas. Am J Surg Pathol 41(2):195–203

    Article  Google Scholar 

  13. Fetsch JF, Miettinen M, Laskin WB et al (2000) A clinicopathologic study of 45 pediatric soft tissue tumors with an admixture of adipose tissue and fibroblastic elements, and a proposal for classification as lipofibromatosis. Am J Surg Pathol 24:1491–1500

    Article  CAS  Google Scholar 

  14. Al-Ibraheemi A, Folpe AL, Perez-Atayde AR, Perry K, Hofvander J, Arbajian E, Magnusson L, Nilsson J, Mertens F (2018) Aberrant receptor tyrosine kinase signaling in lipofibromatosis: a clinicopathological and molecular genetic study of 20 cases. Mod Pathol. https://doi.org/10.1038/s41379-018-0150-3

    Article  PubMed  Google Scholar 

  15. Agaram NP, Zhang L, Sung YS, Chen CL, Chung CT, Antonescu CR, Fletcher CD (2016) Recurrent NTRK1 gene fusions define a novel subset of locally aggressive Lipofibromatosis-like neural tumors. Am J Surg Pathol 40(10):1407–1416

    Article  Google Scholar 

  16. Saab ST, McClain CM, Coffin CM (2014) Fibrous hamartoma of infancy: a clinicopathologic analysis of 60 cases. Am J Surg Pathol 38:394–401

    Article  Google Scholar 

  17. Al-Ibraheemi A, Martinez A, Weiss SW, Kozakewich HP, Perez-Atayde AR, Tran H, Parham DM, Sukov WR, Fritchie KJ, Folpe AL (2017) Fibrous hamartoma of infancy: a clinicopathologic study of 145 cases, including 2 with sarcomatous features. Mod Pathol 30:474–485

    Article  Google Scholar 

  18. Park JY, Cohen C, Lopez D, Ramos E, Wagenfuehr J, Rakheja D (2016) EGFR Exon 20 insertion/duplication mutations characterize fibrous hamartoma of infancy. Am J Surg Pathol 40:1713–1718

    Article  Google Scholar 

  19. Coffin CM, Randall RL, Million L, Zhous H (2010) Desmoid fibromatosis in childhood and adolescence: an analysis of 65 patients in the first two decades of life. Mod Pathol 23:394A

    Google Scholar 

  20. Knudsen AL, Bulow S (2010) Desmoid tumour in familial adenomatous polyposis: a review of literature. Fam Cancer 1:111–119

    Google Scholar 

  21. Meazza C, Bisogno G, Gronchi A, Fiore M, Cecchetto G, Alaggio R, Milano GM, Casanova M, Carli M, Ferrari A (2010) Aggressive fibromatosis in children and adolescents: the Italian experience. Cancer 116:233–240

    CAS  PubMed  Google Scholar 

  22. Sparber-Sauer M, Seitz G, von Kalle T, Vokuhl C, Leuschner I, Scheer M, Münter M, Ljungman G, Bielack SS, Niggli F, Ladenstein R, Klingebiel T, Fuchs J, Koscielniak E, CWS Study Group (2018) Systemic therapy of aggressive fibromatosis in children and adolescents: Report of the Cooperative Weichteilsarkom Studiengruppe (CWS). Pediatr Blood Cancer 65(5):e26943. https://doi.org/10.1002/pbc.26943

    Article  PubMed  Google Scholar 

  23. Leithner A, Gapp M, Radl R, Pascher A, Krippl P, Leithner K, Windhager R, Beham A (2005) Immunohistochemical analysis of desmoid tumours. J Clin Pathol 58:1152–1156

    Article  CAS  Google Scholar 

  24. Miyoshi Y, Iwao K, Nawa G, Yoshikawa H, Ochi T, Nakamura Y (1998) Frequent mutations in the beta-catenin gene in desmoid tumors from patients without familial adenomatous polyposis. Oncol Res 10:591–594

    CAS  PubMed  Google Scholar 

  25. Mullen JT, DeLaney TF, Rosenberg AE, Le L, Iafrate AJ, Kobayashi W, Szymonifka J, Yeap BY, Chen YL, Harmon DC, Choy E, Yoon SS, Raskin KA, Hornicek FJ, Nielsen GP (2013) β‑Catenin mutation status and outcomes in sporadic desmoid tumors. Oncologist 18(9):1043–1049

    Article  Google Scholar 

  26. Le Guellec S, Soubeyran I, Rochaix P, Filleron T, Neuville A, Hostein I, Coindre JM (2012) CTNNB1 mutation analysis is a useful tool for the diagnosis of desmoid tumors: a study of 260 desmoid tumors and 191 potential morphologic mimics. Mod Pathol 25(12):1551–1558

    Article  Google Scholar 

  27. Coffin CM, Watterson J, Priest JR, Dehner LP (1995) Extrapulmonar inflammatory myofibroblastic tumor (inflammatory pseudotumor): a clinicopathologic and immunohistochemical study of 84 cases. Am J Surg Pathol 19:859–872

    Article  CAS  Google Scholar 

  28. Coffin CM, Hornick JL, Fletcher CD (2007) Inflammatory myofibroblastic tumor: comparison of clinicopathologic, histologic, and immunohistochemical features including ALK expression in atypical and aggressive cases. Am J Surg Pathol 31:509–520

    Article  Google Scholar 

  29. Kube S, Vokuhl C, Dantonello T, Scheer M, Hallmen E, Feuchtgruber S, Escherich G, Niggli F, Kuehnle I, von Kalle T, Bielack S, Klingebiel T, Koscielniak E (2018) Inflammatory myofibroblastic tumors—A retrospective analysis of the Cooperative Weichteilsarkom Studiengruppe. Pediatr Blood Cancer 65(6):e27012

    Article  Google Scholar 

  30. Antonescu CR, Suurmeijer AJ, Zhang L, Sung YS, Jungbluth AA, Travis WD, Al-Ahmadie H, Fletcher CD, Alaggio R (2015) Molecular characterization of inflammatory myofibroblastic tumors with frequent ALK and ROS1 gene fusions and rare novel RET rearrangement. Am J Surg Pathol 39(7):957–967

    Article  Google Scholar 

  31. Yamamoto H, Yoshida A, Taguchi K, Kohashi K, Hatanaka Y, Yamashita A, Mori D, Oda Y (2016) ALK, ROS1 and NTRK3 gene rearrangements in inflammatory myofibroblastic tumours. Histopathology 69(1):72–83

    Article  Google Scholar 

  32. Folpe AL, Lane KL, Paull G, Weiss SW (2000) Low-grade fibromyxoid sarcoma and hyalinizing spindle cell tumor with giant rosettes: a clinicopathologic study of 73 cases supporting their identity and assessing the impact of high-grade areas. Am J Surg Pathol 24:1353–1360

    Article  CAS  Google Scholar 

  33. Goodlad JR, Mentzel T, Fletcher CD (1995) Low grade fibromyxoid sarcoma: clinicopathological analysis of eleven new cases in support of a distinct entity. Histopathology 26:229–237

    Article  CAS  Google Scholar 

  34. Guillou L, Benhattar J, Gengler C, Gallagher G, Ranchère-Vince D, Collin F, Terrier P, Terrier-Lacombe MJ, Leroux A, Marquès B, Aubain Somerhausen Nde S, Keslair F, Pedeutour F, Coindre JM (2007) Translocation-positive low-grade fibromyxoid sarcoma: clinicopathologic and molecular analysis of a series expanding the morphologic spectrum and suggesting potential relationship to sclerosing epithelioid fibrosarcoma:a study from the French Sarcoma Group. Am J Surg Pathol 31:1387–1402

    Article  Google Scholar 

  35. Doyle LA, Möller E, Dal Cin P, Fletcher CD, Mertens F, Hornick JL (2011) MUC4 is a highly sensitive and specific marker for low-grade fibromyxoid sarcoma. Am J Surg Pathol 35(5):733–741

    Article  Google Scholar 

  36. Panagopoulos I, Storlazzi CT, Fletcher CD, Fletcher JA, Nascimento A, Domanski HA, Wejde J, Brosjö O, Rydholm A, Isaksson M, Mandahl N, Mertens F (2004) The chimeric FUS/CREB3l2 gene is specific for low-grade fibromyxoid sarcoma. Genes Chromosomes Cancer 40(3):218–228

    Article  CAS  Google Scholar 

  37. Mertens F, Fletcher CD, Antonescu CR, Coindre JM, Colecchia M, Domanski HA, Downs-Kelly E, Fisher C, Goldblum JR, Guillou L, Reid R, Rosai J, Sciot R, Mandahl N, Panagopoulos I (2005) Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene. Lab Invest 85(3):408–415

    Article  CAS  Google Scholar 

  38. Cecchetto G, Carli M, Alaggio R, Dall’Igna P, Bisogno G, Scarzello G, Zanetti I, Durante G, Inserra A, Siracusa F, Guglielmi M, Cooperative Group (2001) Fibrosarcoma in pediatric patients: results of the Italian Cooperative Group studies (1979–1995). J Surg Oncol 78(4):225–231

    Article  CAS  Google Scholar 

  39. Sheng WQ, Hisaoka M, Okamoto S, Tanaka A, Meis-Kindblom JM, Kindblom LG, Ishida T, Nojima T, Hashimoto H (2001) Congenital-infantile fibrosarcoma. A clinicopathologic study of 10 cases and molecular detection of the ETV6-NTRK3 fusion transcripts using paraffin-embedded tissues. Am J Clin Pathol 115(3):348–355

    Article  CAS  Google Scholar 

  40. Bourgeois JM, Knezevich SR, Mathers JA, Sorensen PH (2000) Molecular detection of the ETV6-NTRK3 gene fusion differentiates congenital fibrosarcoma from other childhood spindle cell tumors. Am J Surg Pathol 24(7):937–946

    Article  CAS  Google Scholar 

  41. Haller F, Knopf J, Ackermann A, Bieg M, Kleinheinz K, Schlesner M, Moskalev EA, Will R, Satir AA, Abdelmagid IE, Giedl J, Carbon R, Rompel O, Hartmann A, Wiemann S, Metzler M, Agaimy A (2016) Paediatric and adult soft tissue sarcomas with NTRK1 gene fusions: a subset of spindle cell sarcomas unified by a prominent myopericytic/haemangiopericytic pattern. J Pathol 238(5):700–710

    Article  CAS  Google Scholar 

  42. Wegert J, Vokuhl C, Collord G, Del Castillo Velasco-Herrera M, Farndon SJ, Guzzo C, Jorgensen M, Anderson J, Slater O, Duncan C, Bausenwein S, Streitenberger H, Ziegler B, Furtwängler R, Graf N, Stratton MR, Campbell PJ, Jones DT, Koelsche C, Pfister SM, Mifsud W, Sebire N, Sparber-Sauer M, Koscielniak E, Rosenwald A, Gessler M, Behjati S (2018) Recurrent intragenic rearrangements of EGFR and BRAF in soft tissue tumors of infants. Nat Commun 9(1):2378

    Article  Google Scholar 

  43. Leuschner I, Newton WA Jr, Schmidt D, Sachs N, Asmar L, Hamoudi A, Harms D, Maurer HM (1993) Spindle cell variants of embryonal rhabdomyosarcoma in the paratesticular region. A report of the Intergroup Rhabdomyosarcoma Study. Am J Surg Pathol 17(3):221–230

    Article  CAS  Google Scholar 

  44. Cavazzana AO, Schmidt D, Ninfo V, Harms D, Tollot M, Carli M, Treuner J, Betto R, Salviati G (1992) Spindle cell rhabdomyosarcoma. A prognostically favorable variant of rhabdomyosarcoma. Am J Surg Pathol 16(3):229–235

    Article  CAS  Google Scholar 

  45. Agaram NP, LaQuaglia MP, Alaggio R, Zhang L, Fujisawa Y, Ladanyi M, Wexler LH, Antonescu CR (2019) MYOD1-mutant spindle cell and sclerosing rhabdomyosarcoma: an aggressive subtype irrespective of age. A reappraisal for molecular classification and risk stratification. Mod Pathol 32(1):27–36

    Article  CAS  Google Scholar 

  46. Rekhi B, Upadhyay P, Ramteke MP, Dutt A (2016) MYOD1 (L122R) mutations are associated with spindle cell and sclerosing rhabdomyosarcomas with aggressive clinical outcomes. Mod Pathol 29(12):1532–1540

    Article  CAS  Google Scholar 

  47. Alaggio R, Zhang L, Sung YS, Huang SC, Chen CL, Bisogno G, Zin A, Agaram NP, LaQuaglia MP, Wexler LH, Antonescu CR (2016) A molecular study of pediatric spindle and Sclerosing Rhabdomyosarcoma: identification of novel and recurrent VGLL2-related fusions in infantile cases. Am J Surg Pathol 40(2):224–235

    PubMed  PubMed Central  Google Scholar 

  48. Mosquera JM, Sboner A, Zhang L, Kitabayashi N, Chen CL, Sung YS, Wexler LH, LaQuaglia MP, Edelman M, Sreekantaiah C, Rubin MA, Antonescu CR (2013) Recurrent NCOA2 gene rearrangements in congenital/infantile spindle cell rhabdomyosarcoma. Genes Chromosomes Cancer 52(6):538–550

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Vokuhl.

Ethics declarations

Interessenkonflikt

C. Vokuhl gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Schwerpunktherausgeber

M. Evert, Regensburg

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vokuhl, C. Kindliche Tumoren mit Spindelzellmorphologie. Pathologe 40, 381–392 (2019). https://doi.org/10.1007/s00292-019-0602-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-019-0602-7

Schlüsselwörter

Keywords

Navigation