Skip to main content
Log in

Personalisierte Krebsmedizin

Biomarker zur molekularen Therapiestratifizierung im Pankreaskarzinom

Personalized cancer medicine

Biomarkers for molecular therapy stratification in pancreatic carcinoma

  • Hauptreferate: Aktuelle Habilitationen
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Das duktale Adenokarzinom des Pankreas (PDAC) ist bei steigender Inzidenz mit einer sehr schlechten Prognose assoziiert. Eine Minderheit der Patienten kommt für eine Resektion in Betracht; die Mehrheit ist inoperabel oder zeigt Metastasen bei Erstdiagnose. Da nahezu alle Patienten rezidivieren, steht die palliative Situation klinisch im Vordergrund, in der hauptsächlich konventionelle systemische Chemotherapien eingesetzt werden. Spezifische, durch Biomarker charakterisierbare Tumoreigenschaften können hierbei Aufschluss über mögliche zielgerichtete Therapien im Sinne einer personalisierten Krebsmedizin geben. Auch wenn diese Alterationen mit sehr niedriger Frequenz auftreten, können sie für die Prognose des einzelnen Patienten sehr bedeutsame Auswirkungen haben. Dieser Übersichtsartikel fasst wesentliche Beiträge zu diesen Themen zusammen und gibt einen Ausblick auf ihre klinische Bedeutung.

Abstract

Ductal adenocarcinoma of the pancreas has a very poor prognosis and a rising incidence. Even after curative intent resection, which is possible in a minority of patients, most patients relapse, whereas the majority is diagnosed with inoperable or metastatic disease. That’s why palliative systemic chemotherapy is the current therapeutic mainstay. Biomarker-based tumor characterization could identify potential therapy targets and enable a personalized cancer medicine. Although potentially targetable alterations occur at very low frequencies, the possible impact on patient outcome can be significant. This article summarizes some of the contributions to these aspects and gives an outlook on their clinical meaning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. Ca Cancer J Clin 68(1):7–30

    Article  Google Scholar 

  2. Paniccia A et al (2015) Characteristics of 10-year survivors of pancreatic ductal Adenocarcinoma. Jama Surg 150(8):701–710

    Article  Google Scholar 

  3. Rahib L et al (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74(11):2913–2921

    Article  CAS  Google Scholar 

  4. Kleeff J et al (2016) Pancreatic cancer. Nat Rev Dis Primers 2:16022

    Article  Google Scholar 

  5. Oettle H et al (2013) Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: the CONKO-001 randomized trial. JAMA 310(14):1473–1481

    Article  CAS  Google Scholar 

  6. Neoptolemos JP et al (2017) Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial. Lancet 389(10073):1011–1024

    Article  CAS  Google Scholar 

  7. Ottaiano A et al (2017) Gemcitabine mono-therapy versus gemcitabine plus targeted therapy in advanced pancreatic cancer: a meta-analysis of randomized phase III trials. Acta Oncol 56(3):377–383

    Article  CAS  Google Scholar 

  8. Moore MJ et al (2007) Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25(15):1960–1966

    Article  CAS  Google Scholar 

  9. Binenbaum Y, Na’ara S, Gil Z (2015) Gemcitabine resistance in pancreatic ductal adenocarcinoma. Drug Resist Updat 23:55–68

    Article  Google Scholar 

  10. Hruban RH, Fukushima N (2007) Pancreatic adenocarcinoma: update on the surgical pathology of carcinomas of ductal origin and PanINs. Mod Pathol 20(1s):S61

    Article  Google Scholar 

  11. Kleeff J et al (2007) Pancreatic cancer microenvironment. Int J Cancer 121(4):699–705

    Article  CAS  Google Scholar 

  12. Johnson BA et al (2017) Strategies for increasing pancreatic tumor immunogenicity. AACR. Clin Cancer Res 23(7):1656–1669

    Article  Google Scholar 

  13. Neoptolemos JP et al (2018) Therapeutic developments in pancreatic cancer: current and future perspectives. Nat Rev Gastroenterol Hepatol 15:333–348. https://doi.org/10.1038/s41575-018-0005-x

    Article  PubMed  Google Scholar 

  14. Damaraju VL et al (2003) Nucleoside anticancer drugs: the role of nucleoside transporters in resistance to cancer chemotherapy. Oncogene 22(47):7524

    Article  CAS  Google Scholar 

  15. Farrell JJ et al (2009) Human equilibrative nucleoside transporter 1 levels predict response to gemcitabine in patients with pancreatic cancer. Gastroenterology 136(1):187–195

    Article  Google Scholar 

  16. Greenhalf W et al (2013) Pancreatic cancer hENT1 expression and survival from gemcitabine in patients from the ESPAC-3 trial. J Natl Cancer Inst 106(1):djt347

    PubMed  Google Scholar 

  17. Sinn M et al (2015) Human equilibrative nucleoside transporter 1 expression analysed by the clone SP 120 rabbit antibody is not predictive in patients with pancreatic cancer treated with adjuvant gemcitabine-results from the CONKO-001 trial. Eur J Cancer 51(12):1546–1554

    Article  CAS  Google Scholar 

  18. Ormanns S et al (2014) Human equilibrative nucleoside transporter 1 is not predictive for gemcitabine efficacy in advanced pancreatic cancer: translational results from the AIO-PK0104 phase III study with the clone SP120 rabbit antibody. Eur J Cancer 50(11):1891–1899

    Article  CAS  Google Scholar 

  19. Poplin E et al (2013) Randomized, multicenter, phase II study of CO-101 versus gemcitabine in patients with metastatic pancreatic ductal adenocarcinoma: including a prospective evaluation of the role of hENT1 in gemcitabine or CO-101 sensitivity. J Clin Oncol 31(35):4453–4461

    Article  CAS  Google Scholar 

  20. Svrcek M et al (2015) Human equilibrative nucleoside transporter 1 testing in pancreatic ductal adenocarcinoma: a comparison between murine and rabbit antibodies. Histopathology 66(3):457–462

    Article  Google Scholar 

  21. Elander N et al (2018) Intratumoural expression of deoxycytidylate deaminase or ribonuceotide reductase subunit M1 expression are not related to survival in patients with resected pancreatic cancer given adjuvant chemotherapy. Br J Cancer 118(8):1084

    Article  CAS  Google Scholar 

  22. de Sousa Cavalcante L, Monteiro Gemcitabine G (2014) Metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur J Pharmacol 741:8–16

    Article  Google Scholar 

  23. Ormanns S et al (2016) Impact of SPARC expression on outcome in patients with advanced pancreatic cancer not receiving nab-paclitaxel: a pooled analysis from prospective clinical and translational trials. Br J Cancer 115(12):1520

    Article  CAS  Google Scholar 

  24. Von Hoff DD et al (2011) Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J Clin Oncol 29(34):4548

    Article  Google Scholar 

  25. Hidalgo M et al (2015) SPARC expression did not predict efficacy of nab-paclitaxel plus gemcitabine or gemcitabine alone for metastatic pancreatic cancer in an exploratory analysis of the phase III MPACT trial. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-14-3222

    Article  Google Scholar 

  26. Provenzano PP et al (2012) Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21(3):418–429

    Article  CAS  Google Scholar 

  27. Jacobetz MA, Chan DS, Neesse A et al (2013) Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut 62:112–120. https://doi.org/10.1136/gutjnl-2012-302529

    Article  CAS  PubMed  Google Scholar 

  28. Hingorani SR et al (2015) High response rate and PFS with PEGPH20 added to nab-paclitaxel/gemcitabine in stage IV previously untreated pancreatic cancer patients with high-HA tumors: interim results of a randomized phase II study. Am Soc Clin Oncol 33(15_suppl):4006–4006. https://doi.org/10.1200/jco.2015.33.15_suppl.4006

    Article  Google Scholar 

  29. Hingorani SR et al (2016) Phase 1b study of PEGylated recombinant human Hyaluronidase and Gemcitabine in patients with advanced pancreatic cancer. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-15-2010

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hendifar A et al (2017) 743PTumor hyaluronan (HA) is a novel biomarker: Results of the randomized phase 2 HALO 202 study of PEGPH20 plus nab-paclitaxel/gemcitabine (PAG) vs AG in previously untreated, metastatic pancreatic ductal adenocarcinoma (mPDA). Ann Oncol. https://doi.org/10.1093/annonc/mdx369.126

    Article  Google Scholar 

  31. Waddell N et al (2015) Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518(7540):495

    Article  CAS  Google Scholar 

  32. Bailey P et al (2016) Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531(7592):47

    Article  CAS  Google Scholar 

  33. Dreyer SB et al (2017) Pancreatic cancer genomes: implications for clinical management and therapeutic development. AACR. https://doi.org/10.1158/1078-0432.CCR-16-2411

    Article  Google Scholar 

  34. Shaw AT et al (2013) Crizotinib versus Chemotherapy in Advanced ALK-Positive Lung Cancer. N Engl J Med 368(25):2385–2394

    Article  CAS  Google Scholar 

  35. Ormanns S et al (2014) ALK expression is absent in pancreatic ductal adenocarcinoma. J Cancer Res Clin Oncol 140(9):1625–1628

    Article  CAS  Google Scholar 

  36. Singhi AD et al (2017) Identification of targetable ALK rearrangements in pancreatic ductal adenocarcinoma. J Natl Compr Canc Netw 15(5):555–562

    Article  Google Scholar 

  37. Guan M et al (2018) Molecular and clinical characterization of BRAF mutations in pancreatic ductal adenocarcinomas (PDACs). J Clin Oncol 36(4_suppl):214–214

    Google Scholar 

  38. Witkiewicz AK et al (2015) Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun 6:6744

    Article  CAS  Google Scholar 

  39. Golan T et al (2014) Overall survival and clinical characteristics of pancreatic cancer in BRCA mutation carriers. Br J Cancer 111(6):1132

    Article  CAS  Google Scholar 

  40. Kaufman B et al (2015) Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol 33(3):244

    Article  CAS  Google Scholar 

  41. Barbari SR, Shcherbakova PV (2017) Replicative DNA polymerase defects in human cancers: consequences, mechanisms, and implications for therapy. DNA Repair (Amst) 56:16–25

    Article  CAS  Google Scholar 

  42. Guenther M, Veninga V, Kumbrink J et al (2018) POLE gene hotspot mutations in advanced pancreatic cancer. J Cancer Res Clin Oncol. https://doi.org/10.1007/s00432-018-2746-x

    Article  Google Scholar 

  43. Humphris JL et al (2017) Hypermutation in pancreatic cancer. Gastroenterology 152(1):68–74

    Article  CAS  Google Scholar 

  44. Le DT et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357(6349):409–413

    Article  CAS  Google Scholar 

  45. Hellmann MD et al (2018) Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med 378:2093–2104. https://doi.org/10.1056/NEJMoa1801946

    Article  CAS  PubMed  Google Scholar 

  46. Hilmi M, Bartholin L, Neuzillet C (2018) Immune therapies in pancreatic ductal adenocarcinoma: Where are we now? World J Gastroenterol 24(20):2137

    Article  Google Scholar 

Download references

Danksagung

Mein besonderer Dank gilt meinen klinischen Kooperationspartnern aus der AG Onkologie der Medizinischen Klinik III/Comprehensive Cancer Center am Klinikum der Universität München. Darüber hinaus möchte ich mich bei Herrn Prof. Dr. Thomas Kirchner für die Unterstützung meiner Forschungstätigkeit neben meiner Ausbildung zum Facharzt für Pathologie bedanken.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ormanns.

Ethics declarations

Interessenkonflikt

S. Ormanns gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

The supplement containing this article is not sponsored by industry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ormanns, S. Personalisierte Krebsmedizin. Pathologe 39 (Suppl 2), 221–224 (2018). https://doi.org/10.1007/s00292-018-0539-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-018-0539-2

Schlüsselwörter

Keywords

Navigation