Skip to main content
Log in

Protein-Dysregulationen in humanen und murinen myeloproliferativen Neoplasien

Protein-dysregulation in human and murine myeloproliferative neoplasms

  • Hauptreferate: Aktuelle Habilitationen
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

In dieser Arbeit werden verschiedene Arten der Dysregulation von Signalproteinen im Kontext myeloproliferativer Neoplasien beleuchtet. In dieser heterogenen Erkrankungsgruppe spielt für die Initiation der Tumorigenese insbesondere die unkontrollierte Zellproliferation eine sehr wichtige Rolle, die von Robert Weinberg als ein „Hallmark“ für die Entstehung von Krebs bezeichnet wurde. Anhand der Dysregulation von GAB2, einem Protein, das an der Ausbildung des für die chronische myeloische Leukämie (CML) pathognomonischen BCR/ABL-Translokationskomplexes beteiligt ist, konnte gezeigt werden, dass eine quantitative Zunahme von GAB2 zu einer Verstärkung des Krankheitsbildes in einem BCR/ABL-positiven Mausmodell führt und die Akzeleration der Erkrankung mit einer Änderung der subzellulären Lokalisation des Signalmoleküls in Blasten humaner CML-Knochenmarkbiopsien einhergeht. Des Weiteren zeigen die Analysen eines Mausmodells, dass eine Proteinfehlregulation bedingt durch eine distinkte Translokation (TEL-SYK) zur Ausbildung eines ganz bestimmten und morphologisch sehr charakteristischen Phänotyps im Knochenmark erkrankter Mäuse führt. Darüber hinaus werden Ergebnisse präsentiert, die zeigen, dass in bestimmten Subgruppen von myeloproliferativen Neoplasien das zunächst nur in seiner Eigenschaft als Translokationsfaktor bekannte Protein NFE2 scheinbar mittels Änderung seiner subzellulären Lokalisation reguliert wird. Der Unterschied in der Lokalisation von NFE2 in erythroiden Knochenmarkzellen ist zwischen essentieller Thrombozythämie und primärer Myelofibrose so deutlich, dass die quantitative NFE2-Immunhistochemie als Zusatzuntersuchung zur frühen Unterscheidung dieser beiden Entitäten in der Routinediagnostik Anwendung finden kann.

Abstract

In this work different types of dysregulation of signaling proteins in the context of myeloproliferative neoplasms are examined. In this heterogeneous disease group, uncontrolled cell proliferation plays a crucial role for the initiation of tumorigenesis, which Robert Weinberg described as a “hallmark” for the development of cancer. Protein dysregulation in form of overexpression of GAB2, a protein involved in formation of the CML-pathognomonic BCR/ABL-translocation complex, results in an enhanced disease phenotype in a Bcr/Abl-positive mouse model and disease acceleration is associated with a change of the subcellular localization of GAB2 in human blasts in CML-bone marrow biopsies. Furthermore, analyses of a mouse model show that a protein dysregulation caused by a distinct translocation (Tel-Syk) leads to the formation of a specific and morphologically very characteristic phenotype in the bone marrow of diseased mice. Moreover, results were presented which show that in certain subgroups of Myeloproliferative Neoplasms the protein NFE2, which is initially known only as a translocating factor, is apparently regulated by altering its subcellular localization. The difference in the subcellular localization of NFE2 in erythroid bone marrow cells is so clear between Essential Thrombocythemia and Primary Myelofibrosis that quantitative NFE2 immunohistochemistry can be used as an ancillary tool to diagnostically discriminate these two entities in an early stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Kroft S, Harrington A et al (2015) Bone marrow – myeloproliferative neoplasms. In: Mills S, Greenson J, Hornick J, Longacre T, Reuter V (Hrsg) Diagnostic surg. pathol, 6. Aufl. Wolters Kluwer, Dordrecht, S 696–702

    Google Scholar 

  2. Swerdlow SH, Campo, Harris, Jaffe, Pileri, Stein (2017) WHO classification of tumours of haematopoietic and lymphoid tissues. World Health Organization, International Agency for Research on Cancer

    Google Scholar 

  3. Buchner M, Fuchs S, Prinz G, Pfeifer D, Bartholomé K, Burger M et al (2009) Spleen tyrosine kinase is overexpressed and represents a potential therapeutic target in chronic lymphocytic leukemia. Cancer Res 69:5424–5432. https://doi.org/10.1158/0008-5472.CAN-08-4252

    Article  CAS  PubMed  Google Scholar 

  4. Dierks C, Adrian F, Fisch P, Ma H, Maurer H, Herchenbach D et al (2010) The ITK-SYK fusion oncogene induces a T-cell lymphoproliferative disease in mice mimicking human disease. Cancer Res 70:6193–6204. https://doi.org/10.1158/0008-5472.CAN-08-3719

    Article  CAS  PubMed  Google Scholar 

  5. Kuno Y, Abe A, Emi N, Iida M, Yamamori T, Tanimoto M et al (1999) An atypical myelodysplastic syndrome with t(9;12)(q22;p12) and TEL gene rearrangement. Br J Haematol 106:570–571. https://doi.org/10.1046/j.1365-2141.1999.01607.x

    Article  CAS  PubMed  Google Scholar 

  6. Sprissler C (2013) Die Rolle von SYK in hämatologischen Erkrankungen. Fakultät für Biologie. Albert Ludwigs-Universität Freiburg, Breisgau

    Google Scholar 

  7. Sprissler C, Belenki D, Maurer H, Aumann K, Pfeifer D, Klein C, Müller TA, Kissel S, Hülsdünker J, Alexandrovski J, Brummer T, Jumaa H, Duyster J, Dierks C (2014) Depletion of STAT5 blocks TEL-SYK-induced APMF-type leukemia with myelofibrosis and myelodysplasia in mice. Blood Cancer J 22(4):e240. https://doi.org/10.1038/bcj.2014.53

    Article  Google Scholar 

  8. Kogan SC, Ward JM, Anver MR, Berman JJ, Brayton C, Cardiff RD et al (2002) Bethesda proposals for classification of nonlymphoid hematopoietic neoplasms in mice. Blood 100:238–245

    Article  CAS  Google Scholar 

  9. Baccarani M, Saglio G, Goldman J, Hochhaus A, Simonsson B, Appelbaum F et al (2006) Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 108:1809–1820. https://doi.org/10.1182/blood-2006-02-005686

    Article  CAS  PubMed  Google Scholar 

  10. Baccarani M, Cortes J, Pane F, Niederwieser D, Saglio G, Apperley J et al (2009) Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. J Clin Oncol 27:6041–6051. https://doi.org/10.1200/JCO.2009.25.0779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Steegmann JL, Baccarani M, Breccia M, Casado LF, García-Gutiérrez V, Hochhaus A et al (2016) European LeukemiaNet recommendations for the management and avoidance of adverse events of treatment in chronic myeloid leukaemia. Leukemia. https://doi.org/10.1038/leu.2016.104

    Article  PubMed  PubMed Central  Google Scholar 

  12. Deininger M, Buchdunger E, Druker BJ (2005) The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105:2640–2653. https://doi.org/10.1182/blood-2004-08-3097

    Article  CAS  PubMed  Google Scholar 

  13. Ren R (2005) Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 5:172–183. https://doi.org/10.1038/nrc1567

    Article  CAS  PubMed  Google Scholar 

  14. Sattler M, Mohi MG, Pride YB, Quinnan LR, Malouf NA, Podar K et al (2002) Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell 1:479–492

    Article  CAS  Google Scholar 

  15. Wohrle FU, Daly RJ, Brummer T (2009) Function, regulation and pathological roles of the Gab/DOS docking proteins. Cell Commun Signal 7:22. https://doi.org/10.1186/1478-811X-7-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Koschmieder S, Göttgens B, Zhang P, Iwasaki-Arai J, Akashi K, Kutok JL et al (2005) Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR-ABL leukemogenesis. Blood 105:324–334. https://doi.org/10.1182/blood-2003-12-4369

    Article  CAS  PubMed  Google Scholar 

  17. Halbach S (2016) Gab2 and its role in tyrosine kinase inhibitor resistance in chronic myeloid leukemia. Fakultät für Biologie. Albert-Ludwigs-Universität, Freiburg

    Google Scholar 

  18. Halbach S, Köhler M, Uhl FM, Huber J, Zeiser R, Koschmieder S, Aumann K, Brummer T (2016) Gab2 is essential for Bcr-Abl-mediated leukemic transformation and hydronephrosis in a chronic myeloid leukemia mouse model. Leukemia 30 (9):1942–1945

    Article  CAS  Google Scholar 

  19. Nishida K, Wang L, Morii E, Park SJ, Narimatsu M, Itoh S et al (2002) Requirement of Gab2 for mast cell development and KitL/c-Kit signaling. Blood 99:1866–1869

    Article  Google Scholar 

  20. Kometani K, Aoki M, Kawamata S, Shinozuka Y, Era T, Taniwaki M et al (2006) Role of SPA-1 in phenotypes of chronic myelogenous leukemia induced by BCR-ABL-expressing hematopoietic progenitors in a mouse model. Cancer Res 66:9967–9976. https://doi.org/10.1158/0008-5472.CAN-06-1346

    Article  CAS  PubMed  Google Scholar 

  21. Gu H, Griffin JD, Neel BG (1997) Characterization of two SHP-2-associated binding proteins and potential substrates in hematopoietic cells. J Biol Chem 272:16421–16430

    Article  CAS  Google Scholar 

  22. Gu H, Pratt JC, Burakoff SJ, Neel BG (1998) Cloning of p97/Gab2, the major SHP2-binding protein in hematopoietic cells, reveals a novel pathway for cytokine-induced gene activation. Mol Cell 2:729–740

    Article  CAS  Google Scholar 

  23. Scherr M, Chaturvedi A, Battmer K, Dallmann I, Schultheis B, Ganser A et al (2006) Enhanced sensitivity to inhibition of SHP2, STAT5, and Gab2 expression in chronic myeloid leukemia (CML). Blood 107:3279–3287. https://doi.org/10.1182/blood-2005-08-3087

    Article  CAS  PubMed  Google Scholar 

  24. Aumann K, Lassmann S, Schöpflin A, May AM, Wöhrle FU, Zeiser R et al (2011) The immunohistochemical staining pattern of Gab2 correlates with distinct stages of chronic myeloid leukemia. Human Pathology 42(5):719–726

    Article  CAS  Google Scholar 

  25. Maroun CR, Holgado-Madruga M, Royal I, Naujokas MA, Fournier TM, Wong AJ et al (1999) The Gab1 PH domain is required for localization of Gab1 at sites of cell-cell contact and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Mol Cell Biol 19:1784–1799

    Article  CAS  Google Scholar 

  26. Wöhrle FU (2012) Gab2 signaling in chronic myeloid leukemia cells confers resistance to multiple Bcr-Abl inhibitors. Albert Ludwigs-Universität, Freiburg, Breisgau

    Google Scholar 

  27. Wöhrle FU, Halbach S, Aumann K, Schwemmers S, Braun S, Auberger P, Schramek D, Penninger JM, Laßmann S, Werner M, Waller CF, Pahl HL, Zeiser R, Daly RJ, Brummer T (2013) Gab2 signaling in chronic myeloid leukemia cells confers resistance to multiple Bcr-Abl inhibitors. Leukemia 27(1):118–129

    Article  Google Scholar 

  28. Igarashi K, Kataoka K, Itoh K, Hayashi N, Nishizawa M, Yamamoto M (1994) Regulation of transcription by dimerization of erythroid factor NF-E2 p45 with small Maf proteins. Nature 367:568–572. https://doi.org/10.1038/367568a0

    Article  CAS  PubMed  Google Scholar 

  29. Andrews NC, Erdjument-Bromage H, Davidson MB, Tempst P, Orkin SH (1993) Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein. Nature 362:722–728. https://doi.org/10.1038/362722a0

    Article  CAS  PubMed  Google Scholar 

  30. Aumann K, Frey A‑V, May AM, Hauschke D, Kreutz C, Marx JP, Timmer J, Werner M, Pahl HL (2013) Subcellular mislocalization of the transcription factor NF-E2 in erythroid cells discriminates prefibrotic primary myelofibrosis from essential thrombocythemia. Blood 122 (1):93–99

    Article  CAS  Google Scholar 

  31. Buhr T, Hebeda K, Kaloutsi V, Porwit A, Van der Walt J, Kreipe H et al (2012) European bone marrow working group trial on reproducibility of world health organization criteria to discriminate essential thrombocythemia from prefibrotic primary myelofibrosis. Haematologica 97(3):360–365. https://doi.org/10.3324/haematol.2011.047811 (comment)

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wilkins BS, Erber WN, Bareford D, Buck G, Wheatley K, East CL et al (2008) Bone marrow pathology in essential thrombocythemia: interobserver reliability and utility for identifying disease subtypes. Blood 111:60–70. https://doi.org/10.1182/blood-2007-05-091850

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Aumann.

Ethics declarations

Interessenkonflikt

K. Aumann gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet vom Autor durchgeführte Studien an Menschen und Tieren. Diese Studien wurden von der lokalen Ethikkomission bzw. dem Regierungspräsidium genehmigt.

The supplement containing this article is not sponsored by industry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aumann, K. Protein-Dysregulationen in humanen und murinen myeloproliferativen Neoplasien. Pathologe 39 (Suppl 2), 199–207 (2018). https://doi.org/10.1007/s00292-018-0520-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-018-0520-0

Schlüsselwörter

Keywords

Navigation