Skip to main content
Log in

Immunologische Grundlagen moderner (Tumor‑)Immuntherapie

Immunological foundations of modern (tumor) immunotherapy

  • Schwerpunkt: Immunpathologie
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Die Voraussetzung für die Entwicklung zielgerichteter Strategien zur Beeinflussung des Immunsystems bei der Bekämpfung von Krebserkrankungen sowie zur Förderung und Konzeption neuer Therapieansätze ist, grundlegende Prinzipien hinter der Entstehung, Aktivierung, Regulierung und dem Absterben von Immunzellen sowie die molekularen Mechanismen hinter der Diversifikation und Plastizität des Immunsystems zu verstehen. Die Translation dieser grundlegenden Prinzipien hat in den letzten Jahren zur Entwicklung bahnbrechender Therapieansätze in der Behandlung von Tumorerkrankungen geführt.

Abstract

Understanding the fundamental principles underlying the development, activation, regulation, plasticity, diversification, and even death of immune cells is a prerequisite for the development of targeted strategies to modulate the immune system in the fight against cancer. As our understanding of these processes evolves, their translation has led to the development of pioneering therapeutic approaches in the treatment of malignant diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Anderson AC, Joller N, Kuchroo VK (2016) Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity 44:989–1004. https://doi.org/10.1016/j.immuni.2016.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barber DL, Wherry EJ, Masopust D et al (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682–687. https://doi.org/10.1038/nature04444

    Article  CAS  PubMed  Google Scholar 

  3. Blank C, Mackensen A (2007) Contribution of the PD-L1/PD-1 pathway to T‑cell exhaustion: an update on implications for chronic infections and tumor evasion. Cancer Immunol Immunother 56:739–745. https://doi.org/10.1007/s00262-006-0272-1

    Article  PubMed  Google Scholar 

  4. Brahmer JR, Tykodi SS, Chow LQM et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465. https://doi.org/10.1056/NEJMoa1200694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39:1–10. https://doi.org/10.1016/j.immuni.2013.07.012

    Article  CAS  PubMed  Google Scholar 

  6. Diem S, Kasenda B, Spain L et al (2016) Serum lactate dehydrogenase as an early marker for outcome in patients treated with anti-PD-1 therapy in metastatic melanoma. Br J Cancer 114:256–261. https://doi.org/10.1038/bjc.2015.467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dunn GP, Bruce AT, Ikeda H et al (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998. https://doi.org/10.1038/ni1102-991

    Article  CAS  PubMed  Google Scholar 

  8. Dvorak HF, Dvorak HF (2015) Tumors: wounds that do not heal-redux. Cancer Immunol Res 3:1–11. https://doi.org/10.1158/2326-6066.CIR-14-0209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Evans R, Alexander P (1970) Cooperation of immune lymphoid cells with macrophages in tumour immunity. Nature 228:620–622

    Article  CAS  PubMed  Google Scholar 

  10. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12:253–268. https://doi.org/10.1038/nri3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gerlinger M, Rowan AJ, Horswell S et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892. https://doi.org/10.1056/NEJMoa1113205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grupp SA, Kalos M, Barrett D et al (2013) Chimeric antigen receptor–modified T cells for acute lymphoid leukemia. N Engl J Med 368:1509–1518. https://doi.org/10.1056/NEJMoa1215134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hammers HJ, Plimack ER, Infante JR et al (2017) Safety and efficacy of nivolumab in combination with Ipilimumab in metastatic renal cell carcinoma: the checkmate 016 study. J Clin Oncol 72(2016):198–113. https://doi.org/10.1200/JCO.2016.72.1985

    Article  Google Scholar 

  14. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with Ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723. https://doi.org/10.1056/NEJMoa1003466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Johnson LA, Morgan RA, Dudley ME et al (2009) Gene therapy with human and mouse T‑cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114:535–546. https://doi.org/10.1182/blood-2009-03-211714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kalos M, June CH (2013) Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity 39:49–60. https://doi.org/10.1016/j.immuni.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  17. Kenter GG, Welters MJP, Valentijn ARPM et al (2009) Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med 361:1838–1847. https://doi.org/10.1056/NEJMoa0810097

    Article  CAS  PubMed  Google Scholar 

  18. Kim JM, Chen DS (2016) Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure). Ann Oncol 27:1492–1504. https://doi.org/10.1093/annonc/mdw217

    Article  CAS  PubMed  Google Scholar 

  19. Kochenderfer JN, Rosenberg SA (2013) Treating B‑cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat Rev Clin Oncol 10:267–276. https://doi.org/10.1038/nrclinonc.2013.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kranz LM, Diken M, Haas H et al (2016) Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534:1–16. https://doi.org/10.1038/nature18300

    Article  CAS  Google Scholar 

  21. Krummel MF, Allison JP (1995) CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 182:459–465

    Article  CAS  PubMed  Google Scholar 

  22. Larkin J, Chiarion-Sileni V, Gonzalez R et al (2015) Combined nivolumab and Ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373:23–34. https://doi.org/10.1056/NEJMoa1504030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mantovani A (1978) Effects on in vitro tumor growth of murine macrophages isolated from sarcoma lines differing in immunogenicity and metastasizing capacity. Int J Cancer 22:741–746. https://doi.org/10.1002/ijc.2910220617

    Article  CAS  PubMed  Google Scholar 

  24. Mantovani A, Marchesi F, Malesci A et al (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14:399–416. https://doi.org/10.1038/nrclinonc.2016.217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marin-Acevedo JA, Dholaria B, Soyano AE et al (2018) Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol 11:1–20. https://doi.org/10.1186/s13045-018-0582-8

    Article  Google Scholar 

  26. Mittendorf EA, Clifton GT, Holmes JP et al (2012) Clinical trial results of the HER-2/neu (E75) vaccine to prevent breast cancer recurrence in high-risk patients: from US Military Cancer Institute Clinical Trials Group Study I‑01 and I‑02. Cancer 118:2594–2602. https://doi.org/10.1002/cncr.26574

    Article  CAS  PubMed  Google Scholar 

  27. Noguchi M, Moriya F, Suekane S et al (2012) Phase II study of personalized peptide vaccination for castration-resistant prostate cancer patients who failed in docetaxel-based chemotherapy. Prostate 72:834–845. https://doi.org/10.1002/pros.21485

    Article  CAS  PubMed  Google Scholar 

  28. Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:49–61. https://doi.org/10.1016/j.immuni.2014.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ochoa MC, Minute L, Rodriguez I et al (2017) Antibody-dependent cell cytotoxicity: immunotherapy strategies enhancing effector NK cells. Immunol Cell Biol 95:347–355. https://doi.org/10.1038/icb.2017.6

    Article  CAS  PubMed  Google Scholar 

  30. Petrelli F, Cabiddu M, Coinu A et al (2015) Prognostic role of lactate dehydrogenase in solid tumors: a systematic review and meta-analysis of 76 studies. Acta Oncol 54:961–970. https://doi.org/10.3109/0284186X.2015.1043026

    Article  CAS  PubMed  Google Scholar 

  31. Qian B‑Z, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51. https://doi.org/10.1016/j.cell.2010.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rosenberg SA, Packard BS, Aebersold PM et al (1988) Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 319:1676–1680. https://doi.org/10.1056/NEJM198812223192527

    Article  CAS  PubMed  Google Scholar 

  33. Sahin U, Derhovanessian E, Miller M et al (2017) Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547:1–19. https://doi.org/10.1038/nature23003

    Article  CAS  Google Scholar 

  34. Sakuishi K, Apetoh L, Sullivan JM et al (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207:2187–2194. https://doi.org/10.1084/jem.20100643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348:56–61. https://doi.org/10.1126/science.aaa8172

    Article  CAS  PubMed  Google Scholar 

  36. Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N Engl J Med 366:2443–2454. https://doi.org/10.1056/NEJMoa1200690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vignali DAA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8:523–532. https://doi.org/10.1038/nri2343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Walter S, Weinschenk T, Stenzl A et al (2012) Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 18:1254–1261. https://doi.org/10.1038/nm.2883

    Article  CAS  PubMed  Google Scholar 

  39. Wargo JA, Cooper ZA, Flaherty KT (2014) Universes collide: combining immunotherapy with targeted therapy for cancer. Cancer Discov 4:1377–1386. https://doi.org/10.1158/2159-8290.CD-14-0477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Weide B, Martens A, Hassel JC et al (2016) Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab. Clin Cancer Res 22:5487–5496. https://doi.org/10.1158/1078-0432.CCR-16-0127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Woo S‑R, Corrales L, Gajewski TF (2015) Innate immune recognition of cancer. Annu Rev Immunol 33:445–474. https://doi.org/10.1146/annurev-immunol-032414-112043

    Article  CAS  PubMed  Google Scholar 

  42. Woo S‑R, Turnis ME, Goldberg MV et al (2012) Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T‑cell function to promote tumoral immune escape. Cancer Res 72:917–927. https://doi.org/10.1158/0008-5472.CAN-11-1620

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Schild.

Ethics declarations

Interessenkonflikt

T. Bopp und H. Schild geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Schwerpunktherausgeber

W. Roth, Mainz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bopp, T., Schild, H. Immunologische Grundlagen moderner (Tumor‑)Immuntherapie. Pathologe 39, 492–497 (2018). https://doi.org/10.1007/s00292-018-0517-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-018-0517-8

Schlüsselwörter

Keywords

Navigation