Skip to main content
Log in

Molekulare Prädiktoren in der Immunonkologie

Molecular predictors in immune oncology

  • Schwerpunkt: Immunpathologie
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Die rasante Entwicklung immunonkologischer Behandlungskonzepte wird von einer ebenso dynamischen Entwicklung assoziierter Biomarkerkonzepte zur Auswahl von Patienten, die von einer derartigen Therapie profitieren/nicht profitieren, begleitet. Neben einfachen auf der Expression von Zielmolekülen fußenden Strategien kommen in diesem Kontext zunehmend auch komplexere molekulare Herangehensweisen zum Einsatz. Diese umfassen beispielsweise die entitätsinformierte Bestimmung molekularbiologisch definierter Subtypen (z. B. mikrosatelliteninstabile Neoplasien) sowie Immunzelleffektorsignaturen und die Messung der Tumormutationslast als schon recht diagnostiknahe Biomarkerstrategien. Zudem befinden sich zahlreiche weitere molekulare Prädiktionskonzepte in Entwicklung. Begleitet wird die Identifikation neuer Einzelmarker von kombinatorischen Ansätzen, die Therapiealgorithmen zunehmend auf der integralen gleichzeitigen Evaluation mehrerer immunonkologischer Biomarker aufbauen. Die entsprechenden Entwicklungen im Feld werden in diesem Artikel kursorisch beleuchtet.

Abstract

The current rapid development of novel therapeutic approaches in immune oncology (IO) and specifically in the field of immune checkpoint inhibition is accompanied by an equally dynamic development of novel biomarker approaches for the identification of responding/non-responding patients under IO treatment. In addition to the measurement of the expression of checkpoint ligands/receptors, complex molecular predictors are gaining increasing attention in certain IO treatment constellations. This includes the entity informed identification of molecularly defined biological tumor subtypes (e.g., microsatellite instable neoplasms), the measurement of tumor mutational load and immune cell effector signatures as relatively routine diagnostic compatible novel biomarker strategies. In addition, a multitude of even more complex molecular IO biomarker approaches is emerging. This development is accompanied by new patient selection strategies which are based on the simultaneous combinatorial evaluation of more than one parameter. This article provides a comprehensive overview on currently relevant aspects in the field of IO biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Ayers M, Lunceford J, Nebozhyn M et al (2017) IFN-gamma-related mRNA profile predicts clinical response to PD‑1 blockade. J Clin Invest 127:2930–2940

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bellmunt J, Balar A, Galsky M et al (2016) IMvigor210: updated analyses of first-line (1L) atezolizumab (atezo) in cisplatin (cis)-ineligible locally advanced/metastatic urothelial carcinoma (mUC). Ann Oncol. https://doi.org/10.1093/annonc/mdw373.10

    Article  PubMed  Google Scholar 

  3. Blank CU, Haanen JB, Ribas A et al (2016) CANCER IMMUNOLOGY. The “cancer immunogram”. Science 352:658–660

    Article  CAS  PubMed  Google Scholar 

  4. Borghaei H, Hellmann MD, Paz-Ares LG et al (2018) Nivolumab (Nivo)+ platinum-doublet chemotherapy (Chemo) vs chemo as first-line (1L) treatment (Tx) for advanced non-small cell lung cancer (NSCLC) with〈 1 % tumor PD-L1 expression: Results from CheckMate 227. J Clin Oncol 36(S15):9001

    Article  Google Scholar 

  5. Borghaei H, Paz-Ares L, Horn L et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373:1627–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boxberg M, Steiger K, Lenze U et al (2018) PD-L1 and PD‑1 and characterization of tumor-infiltrating lymphocytes in high grade sarcomas of soft tissue—prognostic implications and rationale for immunotherapy. Oncoimmunology 7:e1389366

    Article  PubMed  Google Scholar 

  7. Cancer Genome Atlas Research N (2014) Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507:315–322

    Article  CAS  Google Scholar 

  8. Carbone DP, Reck M, Paz-Ares L et al (2017) First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med 376:2415–2426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39:1–10

    Article  CAS  PubMed  Google Scholar 

  10. Davoli T, Uno H, Wooten EC et al (2017) Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science. https://doi.org/10.1126/science.aaf8399

    Article  PubMed  PubMed Central  Google Scholar 

  11. Delaunay M, Guibert N, Lusque A et al (2018) Baseline circulating myeloid-derived suppressor cells and response to PD‑1 inhibitor in non-small cell lung cancer patients. J Clin Oncol 36(S5):145

    Article  Google Scholar 

  12. Fabrizio D, Malboeuf C, Lieber D et al (2017) 102PAnalytic validation of a next generation sequencing assay to identify tumor mutational burden from blood (bTMB) to support investigation of an anti-PD-L1 agent, atezolizumab, in a first line non-small cell lung cancer trial (BFAST). Ann Oncol 28:v22. https://doi.org/10.1093/annonc/mdx363

    Article  Google Scholar 

  13. Fehrenbacher L, Spira A, Ballinger M et al (2016) Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet 387:1837–1846

    Article  CAS  PubMed  Google Scholar 

  14. Ferris RL, Blumenschein G Jr., Fayette J et al (2016) Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 375:1856–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fesnak AD, June CH, Levine BL (2016) Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer 16:566–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gettinger S, Choi J, Hastings K et al (2017) Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov 7:1420–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gopalakrishnan V, Spencer CN, Nezi L et al (2018) Gut microbiome modulates response to anti-PD‑1 immunotherapy in melanoma patients. Science 359:97–103

    Article  CAS  PubMed  Google Scholar 

  18. Grasso CS, Giannakis M, Wells DK et al (2018) Genetic mechanisms of immune evasion in colorectal cancer. Cancer Discov 8:730–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Haddad RI, Seiwert TY, Chow LQM et al (2017) Genomic determinants of response to pembrolizumab in head and neck squamous cell carcinoma (HNSCC). J Clin Oncol 35(S15):6009

    Article  Google Scholar 

  20. Hellmann MD, Callahan MK, Awad MM et al (2018) Tumor mutational burden and efficacy of Nivolumab Monotherapy and in combination with Ipilimumab in small-cell lung cancer. Cancer Cell 33:853–861.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hellmann MD, Ciuleanu TE, Pluzanski A et al (2018) Nivolumab plus Ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med 378:2093–2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Herbst RS, Baas P, Kim DW et al (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387:1540–1550

    Article  CAS  PubMed  Google Scholar 

  23. Hopkins AM, Rowland A, Kichenadasse G et al (2017) Predicting response and toxicity to immune checkpoint inhibitors using routinely available blood and clinical markers. Br J Cancer 117:913–920

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kataoka K, Shiraishi Y, Takeda Y et al (2016) Aberrant PD-L1 expression through 3′-UTR disruption in multiple cancers. Nature 534:402–406

    Article  CAS  PubMed  Google Scholar 

  25. Kato S, Goodman A, Walavalkar V et al (2017) Hyperprogressors after Immunotherapy: Analysis of Genomic Alterations Associated with Accelerated Growth Rate. Clin Cancer Res 23:4242–4250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kowanetz M, Zou W, Shames D et al (2016) Tumor mutation load assessed by FoundationOne (FM1) is associated with improved efficacy of atezolizumab (atezo) in patients with advanced NSCLC. Ann Oncol 27(S6):77

    Google Scholar 

  27. Lanitis E, Dangaj D, Irving M et al (2017) Mechanisms regulating T‑cell infiltration and activity in solid tumors. Ann Oncol 28:xii18–xii32

    Article  CAS  PubMed  Google Scholar 

  28. Lauss M, Donia M, Harbst K et al (2017) Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma. Nat Commun 8:1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Le DT, Durham JN, Smith KN et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD‑1 blockade. Science 357:409–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Le DT, Uram JN, Wang H et al (2015) PD‑1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372:2509–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Legrand FA, Gandara DR, Mariathasan S et al (2018) Association of high tissue TMB and atezolizumab efficacy across multiple tumor types. J Clin Oncol 36(S15):12000

    Article  Google Scholar 

  32. Leung DK, De Langen J, Raunig D et al (2018) Whole body PD-L1 PET in patients with NSCLC and melanoma. J Clin Oncol 36(S5):139

    Article  Google Scholar 

  33. Miao D, Margolis CA, Gao W et al (2018) Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359:801–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nebot-Bral L, Brandao D, Verlingue L et al (2017) Hypermutated tumours in the era of immunotherapy: The paradigm of personalised medicine. Eur J Cancer 84:290–303

    Article  CAS  PubMed  Google Scholar 

  35. Nicolazzo C, Raimondi C, Mancini M et al (2016) Monitoring PD-L1 positive circulating tumor cells in non-small cell lung cancer patients treated with the PD‑1 inhibitor Nivolumab. Sci Rep 6:31726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Oh DY, Cham J, Zhang L et al (2016) Association between T cell repertoire diversification and both clinical response as well as toxicity following immune checkpoint blockade in metastatic cancer patients. J Clin Oncol 34(S15):3029

    Article  Google Scholar 

  37. Ott PA, Hu Z, Keskin DB et al (2017) An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547:217–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Peters S, Creelan B, Hellmann MD et al (2017) Abstract CT082: Impact of tumor mutation burden on the efficacy of first-line nivolumab in stage iv or recurrent non-small cell lung cancer: An exploratory analysis of CheckMate 026. Cancer Res 77(S13):CT082

    Article  Google Scholar 

  39. Powles T, Durán I, Van Der Heijden MS et al (2018) Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet 391:748–757

    Article  CAS  PubMed  Google Scholar 

  40. Powles T, Loriot Y, Ravaud A et al (2018) Atezolizumab (atezo) vs. chemotherapy (chemo) in platinum-treated locally advanced or metastatic urothelial carcinoma (mUC): Immune biomarkers, tumor mutational burden (TMB), and clinical outcomes from the phase III IMvigor211 study. J Clin Oncol 36(S6):409

    Article  Google Scholar 

  41. Ramalingam SS, Hellmann MD, Awad MM, Borghaei H, Gainor J, Brahmer J, Spigel DR, Reck M, O’Byrne KJ, Paz-Ares L, Zerba K, Li X, Geese WJ, Green G, Lestini B, Szustakowski JD, Chang H, Ready N (2018) Tumor mutational burden (TMB) as a biomarker for clinical benefit from dual immune checkpoint blockade with nivolumab (nivo) + ipilimumab (ipi) in first-line (1L) non-small cell lung cancer (NSCLC): identification of TMB cutoff from CheckMate 568. Cancer Res 78(S13):CT078

    Article  Google Scholar 

  42. Rittmeyer A, Barlesi F, Waterkamp D et al (2017) Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 389:255–265

    Article  PubMed  Google Scholar 

  43. Robert C, Thomas L, Bondarenko I et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364:2517–2526

    Article  CAS  PubMed  Google Scholar 

  44. Roemer MG, Advani RH, Ligon AH et al (2016) PD-L1 and PD-L2 genetic alterations define classical hodgkin lymphoma and predict outcome. J Clin Oncol 34:2690–2697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Roh W, Chen PL, Reuben A et al (2017) Integrated molecular analysis of tumor biopsies on sequential CTLA‑4 and PD‑1 blockade reveals markers of response and resistance. Sci Transl Med 9(379):eaah3560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rosenberg JE, Hoffman-Censits J, Powles T et al (2016) Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387:1909–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rosenberg JE, Petrylak DP, Van Der Heijden MS et al (2016) PD-L1 expression, Cancer Genome Atlas (TCGA) subtype, and mutational load as independent predictors of response to atezolizumab (atezo) in metastatic urothelial carcinoma (mUC; IMvigor210). J Clin Oncol 34(S15):104

    Article  Google Scholar 

  48. Routy B, Le Chatelier E, Derosa L et al (2018) Gut microbiome influences efficacy of PD‑1-based immunotherapy against epithelial tumors. Science 359:91–97

    Article  CAS  PubMed  Google Scholar 

  49. Sahin U, Derhovanessian E, Miller M et al (2017) Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547:222–226

    Article  CAS  PubMed  Google Scholar 

  50. Schmid P, Hegde PS, Zou W et al (2016) Association of PD-L2 expression in human tumors with atezolizumab activity. J Clin Oncol 34(S15):11506

    Article  Google Scholar 

  51. Seiwert TY, Burtness B, Mehra R et al (2016) Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol 17:956–965

    Article  CAS  PubMed  Google Scholar 

  52. Sharma P, Hu-Lieskovan S, Wargo JA et al (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168:707–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shen J, Ju Z, Zhao W et al (2018) ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nat Med 24:556–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Socinski MA, Jotte RM, Cappuzzo F et al (2018) Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med 378:2288–2301

    Article  CAS  PubMed  Google Scholar 

  55. Straub M, Drecoll E, Pfarr N et al (2016) CD274/PD-L1 gene amplification and PD-L1 protein expression are common events in squamous cell carcinoma of the oral cavity. Oncotarget 7:12024–12034

    Article  PubMed  PubMed Central  Google Scholar 

  56. Teo MY, Seier K, Ostrovnaya I et al (2018) Alterations in DNA damage response and repair genes as potential marker of clinical benefit from PD‑1/PD-L1 blockade in advanced urothelial cancers. J Clin Oncol 36:1685–1694

    Article  PubMed  PubMed Central  Google Scholar 

  57. Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD‑1 antibody in cancer. N Engl J Med 366:2443–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Velcheti V, Kim ES, Mekhail T et al (2018) Prospective clinical evaluation of blood-based tumor mutational burden (bTMB) as a predictive biomarker for atezolizumab (atezo) in 1L non-small cell lung cancer (NSCLC): Interim B‑F1RST results. J Clin Oncol 36(S15):12001

    Article  Google Scholar 

  59. Wan JCM, Massie C, Garcia-Corbacho J et al (2017) Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer 17:223–238

    Article  CAS  PubMed  Google Scholar 

  60. Yearley JH, Gibson C, Yu N et al (2017) PD-L2 expression in human tumors: relevance to anti-PD‑1 therapy in cancer. Clin Cancer Res 23:3158–3167

    Article  CAS  PubMed  Google Scholar 

  61. Zaretsky JM, Garcia-Diaz A, Shin DS et al (2016) Mutations associated with acquired resistance to PD‑1 blockade in melanoma. N Engl J Med 375:819–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Danksagung

Der Autor dankt Renate Hartmann für die exzellente Bildadaptation und die Hilfe bei der Erstellung des Manuskripts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Weichert.

Ethics declarations

Interessenkonflikt

W. Weichert gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Schwerpunktherausgeber

W. Roth, Mainz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weichert, W. Molekulare Prädiktoren in der Immunonkologie. Pathologe 39, 546–555 (2018). https://doi.org/10.1007/s00292-018-0508-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-018-0508-9

Schlüsselwörter

Keywords

Navigation