Skip to main content
Log in

Identifizierung von diagnostischen Tumormarkern und therapeutischen Zielstrukturen in Hodentumoren

Identification of diagnostic tumour markers and therapeutic targets in testicular tumours

  • Hauptreferate: Aktuelle Habilitationen
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Die morphologische Vielfalt maligner Tumoren kann schon innerhalb einer organtypischen Tumorentität beobachtet werden. Diese rein morphologisch definierte Diversifikation maligner Tumoren hatte schon immer individuell abgestimmte Therapiestrategien zur Folge. Heute erfährt die Tumorklassifizierung infolge immunhistochemischer und molekularpathologischer Analysen eine erneute Erweiterung aufgrund entsprechender Muster/Profile der Protein- und Genexpression. Letztere Analysen betreffen häufig Wachstumsfaktoren und deren Liganden, intrazelluläre Signalwege, DNS(Desoxyribonukleinsäure)-bindende Proteine sowie Onkogene und Suppressorgene und umfassen somit funktionell v. a. die Regulation des Wachstums einschließlich Angiogenese und Regulation der Apoptose sowie die Induktion von Metastasen aufgrund von Störungen der Adhäsion und der Migration. Ausgehend von Beobachtungen, dass Tumoren des Hodens häufig Mikroverkalkungen zeigen, die möglicherweise durch einen gestörten Kalziumstoffwechsel bedingt sind, konzentrierten wir uns bei der Suche nach neuen Tumormarkern und therapeutischen Zielstrukturen auf calciumabhängige Transmembranproteine, speziell die Cadherine. N‑Cadherin wird in den verschiedenen Subtypen der Keimzelltumoren unterschiedlich exprimiert und eignet sich in N‑Cadherin-positiven Keimzelltumoren aufgrund funktioneller Analysen als eine neue therapeutische Zielstruktur, insbesondere bei Cisplatin-Resistenz. In den Keimstrang-Gonadenstroma-Tumoren ermöglichen Cadherine nachgeschalteter Proteine wie z. B. β‑Catenin und der Transkriptionsfaktor SOX9 („sex determining region 9“) eine eindeutige Klassifizierung dieser Tumoren. Morphologische Untersuchungen erweisen sich somit als Lotsen, um das Spektrum funktionell bedeutender Proteine zielgerichtet einzuengen, und somit Erfolg versprechend neue differentialdiagnostische Marker oder Zielstrukturen zu etablieren.

Abstract

Today, tumour classification has been expanded due to immunohistochemical and molecular–pathological analyses due to corresponding patterns/profiles of protein and gene expression. The latter analyses often include growth factors and their ligands, intracellular signalling pathways, DNA-binding proteins, and oncogenes and suppressor genes, thus functionally including primarily the regulation of growth including angiogenesis and apoptosis as well as the induction of metastases to adhesion and migration disorders. Based on observations that testicular tumours often show microcalcifications, possibly due to impaired calcium metabolism, we focused on calcium-dependent transmembrane proteins, particularly cadherins, in the search for new tumour markers and therapeutic targets. N‑cadherin is expressed differently in the various subtypes of germ cell tumours and is useful in N‑cadherin-positive germ cell tumours as a novel therapeutic targeting structure, particularly in cisplatin resistance, due to functional analysis. In the tumours of the sex cord stroma beta-catenin and the transcription factor SOX-9 give a clear classification of these tumours. Thus, morphological investigations prove to be pilot experiments to purposefully narrow the spectrum of functionally important proteins and thus to establish promising new differential diagnostic markers or target structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Oliva E, Young RH, Ulbright TM (2016) Sex cord-stromal tumours. In: Moch H, Humphrey PA, Ulbright TM, Reuter VE (Hrsg) WHO classification of tumours of the urinary system and male genital organs. IARC, Lyon

    Google Scholar 

  2. Ulbright TM, Amin MB, Balzer B, Berney DM, Epstein JI, Guo C et al (2016) Germ cell tumours. In: Moch H, Humphrey PA, Ulbright TM, Reuter VE (Hrsg) WHO classification of tumours of the urinary system and male genital organs. IARC, Lyon

    Google Scholar 

  3. Rajpert-De Meyts E (2006) Developmental model for the pathogenesis of testicular carcinoma in situ: genetic and environmental aspects. Hum Reprod Update 12(3):303–323. https://doi.org/10.1093/humupd/dmk006

    Article  CAS  PubMed  Google Scholar 

  4. van der Zwan YG, Biermann K, Wolffenbuttel KP, Cools M, Looijenga LH (2015) Gonadal maldevelopment as risk factor for germ cell cancer: towards a clinical decision model. Eur Urol 67(4):692–701. https://doi.org/10.1016/j.eururo.2014.07.011

    Article  PubMed  Google Scholar 

  5. Skakkebaek NE, Berthelsen JG, Giwercman A, Muller J (1987) Carcinoma-in-situ of the testis: possible origin from gonocytes and precursor of all types of germ cell tumours except spermatocytoma. Int J Androl 10(1):19–28

    Article  CAS  Google Scholar 

  6. Albers P, Siener R, Kliesch S, Weissbach L, Krege S, Sparwasser C et al (2003) Risk factors for relapse in clinical stage I nonseminomatous testicular germ cell tumors: results of the German Testicular Cancer Study Group Trial. J Clin Oncol 21(8):1505–1512. https://doi.org/10.1200/JCO.2003.07.169

    Article  PubMed  Google Scholar 

  7. Heidenreich A, Sesterhenn IA, Mostofi FK, Moul JW (1998) Prognostic risk factors that identify patients with clinical stage I nonseminomatous germ cell tumors at low risk and high risk for metastasis. Cancer 83(5):1002–1011

    Article  CAS  Google Scholar 

  8. Bokemeyer C, Oechsle K, Honecker F, Mayer F, Hartmann JT, Waller CF et al (2008) Combination chemotherapy with gemcitabine, oxaliplatin, and paclitaxel in patients with cisplatin-refractory or multiply relapsed germ-cell tumors: a study of the German Testicular Cancer Study Group. Ann Oncol 19(3):448–453. https://doi.org/10.1093/annonc/mdm526

    Article  CAS  PubMed  Google Scholar 

  9. Oechsle K, Kollmannsberger C, Honecker F, Mayer F, Waller CF, Hartmann JT et al (2011) Long-term survival after treatment with gemcitabine and oxaliplatin with and without paclitaxel plus secondary surgery in patients with cisplatin-refractory and/or multiply relapsed germ cell tumors. Eur Urol 60(4):850–855. https://doi.org/10.1016/j.eururo.2011.06.019

    Article  CAS  PubMed  Google Scholar 

  10. Mayer F, Stoop H, Scheffer GL, Scheper R, Oosterhuis JW, Looijenga LH et al (2003) Molecular determinants of treatment response in human germ cell tumors. Clin Cancer Res 9(2):767–773

    CAS  PubMed  Google Scholar 

  11. Honecker F, Wermann H, Mayer F, Gillis AJ, Stoop H, van Gurp RJ et al (2009) Microsatellite instability, mismatch repair deficiency, and BRAF mutation in treatment-resistant germ cell tumors. J Clin Oncol 27(13):2129–2136. https://doi.org/10.1200/JCO.2008.18.8623

    Article  CAS  PubMed  Google Scholar 

  12. Velasco A, Corvalan A, Wistuba II, Riquelme E, Chuaqui R, Majerson A et al (2008) Mismatch repair expression in testicular cancer predicts recurrence and survival. Int J Cancer 122(8):1774–1777. https://doi.org/10.1002/ijc.23291

    Article  CAS  PubMed  Google Scholar 

  13. Wermann H, Stoop H, Gillis AJ, Honecker F, van Gurp RJ, Ammerpohl O et al (2010) Global DNA methylation in fetal human germ cells and germ cell tumours: association with differentiation and cisplatin resistance. J Pathol 221(4):433–442. https://doi.org/10.1002/path.2725

    Article  CAS  PubMed  Google Scholar 

  14. Juliachs M, Munoz C, Moutinho CA, Vidal A, Condom E, Esteller M et al (2014) The PDGFRbeta-AKT pathway contributes to CDDP-acquired resistance in testicular germ cell tumors. Clin Cancer Res 20(3):658–667. https://doi.org/10.1158/1078-0432.CCR-13-1131

    Article  CAS  PubMed  Google Scholar 

  15. Persons DL, Yazlovitskaya EM, Cui W, Pelling JC (1999) Cisplatin-induced activation of mitogen-activated protein kinases in ovarian carcinoma cells: inhibition of extracellular signal-regulated kinase activity increases sensitivity to cisplatin. Clin Cancer Res 5(5):1007–1014

    CAS  PubMed  Google Scholar 

  16. Schweyer S, Soruri A, Meschter O, Heintze A, Zschunke F, Miosge N et al (2004) Cisplatin-induced apoptosis in human malignant testicular germ cell lines depends on MEK/ERK activation. Br J Cancer 91(3):589–598. https://doi.org/10.1038/sj.bjc.6601919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schrader M, Kempkensteffen C, Christoph F, Hinz S, Weikert S, Lein M et al (2009) Germ cell tumors of the gonads: a selective review emphasizing problems in drug resistance and current therapy options. Oncology 76(2):77–84. https://doi.org/10.1159/000187426

    Article  CAS  PubMed  Google Scholar 

  18. van Casteren NJ, Looijenga LH, Dohle GR (2009) Testicular microlithiasis and carcinoma in situ overview and proposed clinical guideline. Int J Androl 32(4):279–287. https://doi.org/10.1111/j.1365-2605.2008.00937.x

    Article  PubMed  Google Scholar 

  19. Bremmer F, Schallenberg S, Jarry H, Kuffer S, Kaulfuss S, Burfeind P et al (2015) Role of N‑cadherin in proliferation, migration, and invasion of germ cell tumours. Oncotarget 6(32):33426–33437. https://doi.org/10.18632/oncotarget.5288

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bremmer F, Hemmerlein B, Strauss A, Burfeind P, Thelen P, Radzun HJ et al (2012) N‑cadherin expression in malignant germ cell tumours of the testis. BMC Clin Pathol 12:19. https://doi.org/10.1186/1472-6890-12-19

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nalla AK, Estes N, Patel J, Rao JS (2011) N‑cadherin mediates angiogenesis by regulating monocyte chemoattractant protein-1 expression via PI3K/Akt signaling in prostate cancer cells. Exp Cell Res 317(17):2512–2521. https://doi.org/10.1016/j.yexcr.2011.07.024

    Article  CAS  PubMed  Google Scholar 

  22. Li G, Satyamoorthy K, Herlyn M (2001) N‑cadherin-mediated intercellular interactions promote survival and migration of melanoma cells. Cancer Res 61(9):3819–3825

    CAS  PubMed  Google Scholar 

  23. Hay E, Nouraud A, Marie PJ (2009) N‑cadherin negatively regulates osteoblast proliferation and survival by antagonizing Wnt, ERK and PI3K/Akt signalling. PLoS ONE 4(12):e8284. https://doi.org/10.1371/journal.pone.0008284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chung S, Yao J, Suyama K, Bajaj S, Qian X, Loudig OD et al (2013) N‑cadherin regulates mammary tumor cell migration through Akt3 suppression. Oncogene 32(4):422–430. https://doi.org/10.1038/onc.2012.65

    Article  CAS  PubMed  Google Scholar 

  25. Perotti A, Sessa C, Mancuso A, Noberasco C, Cresta S, Locatelli A et al (2009) Clinical and pharmacological phase I evaluation of exherin (ADH-1), a selective anti-N-cadherin peptide in patients with N‑cadherin-expressing solid tumours. Ann Oncol 20(4):741–745. https://doi.org/10.1093/annonc/mdn695

    Article  CAS  PubMed  Google Scholar 

  26. Yarom N, Stewart D, Malik R, Wells J, Avruch L, Jonker DJ (2013) Phase I clinical trial of exherin (ADH-1) in patients with advanced solid tumors. Curr Clin Pharmacol 8(1):81–88

    CAS  PubMed  Google Scholar 

  27. Ulbright TM, Young RH (2013) Tumors of the testis and adjacent structures. AFIP atlas of tumor pathology. ARP Press, Silver Spring

    Google Scholar 

  28. Bremmer F, Schweyer S, Martin-Ortega M, Hammerlein B, Strauss A, Radzun HJ et al (2013) Switch of cadherin expression as a diagnostic tool for Leydig cell tumours. Acta Pathol Microbiol Immunol Scand 121(10):976–981. https://doi.org/10.1111/apm.12053

    Article  CAS  Google Scholar 

  29. Li B, Shi H, Wang F, Hong D, Lv W, Xie X et al (2016) Expression of E‑, P‑ and N‑cadherin and its clinical significance in cervical squamous cell carcinoma and precancerous lesions. PLoS ONE 11(5):e155910. https://doi.org/10.1371/journal.pone.0155910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jager T, Becker M, Eisenhardt A, Tilki D, Totsch M, Schmid KW et al (2010) The prognostic value of cadherin switch in bladder cancer. Oncol Rep 23(4):1125–1132

    PubMed  Google Scholar 

  31. Hazan RB, Qiao R, Keren R, Badano I, Suyama K (2004) Cadherin switch in tumor progression. Ann N Y Acad Sci 1014:155–163

    Article  CAS  Google Scholar 

  32. Sanders DS, Blessing K, Hassan GA, Bruton R, Marsden JR, Jankowski J (1999) Alterations in cadherin and catenin expression during the biological progression of melanocytic tumours. MP, Mol Pathol 52(3):151–157

    Article  CAS  Google Scholar 

  33. Van Marck V, Stove C, Van Den Bossche K, Stove V, Paredes J, Vander Haeghen Y et al (2005) P‑cadherin promotes cell-cell adhesion and counteracts invasion in human melanoma. Cancer Res 65(19):8774–8783. https://doi.org/10.1158/0008-5472.CAN-04-4414

    Article  CAS  PubMed  Google Scholar 

  34. Xiao GQ, Granato RC, Unger PD (2012) Bilateral Sertoli cell tumors of the testis—a likely new extracolonic manifestation of familial adenomatous polyposis. Virchows Arch 461(6):713–715. https://doi.org/10.1007/s00428-012-1332-x

    Article  CAS  PubMed  Google Scholar 

  35. Perrone F, Bertolotti A, Montemurro G, Paolini B, Pierotti MA, Colecchia M (2014) Frequent mutation and nuclear localization of beta-catenin in sertoli cell tumors of the testis. Am J Surg Pathol 38(1):66–71. https://doi.org/10.1097/PAS.0b013e31829cdbc6

    Article  PubMed  Google Scholar 

  36. Zhang C, Ulbright TM (2015) Nuclear localization of beta-catenin in sertoli cell tumors and other sex cord-stromal tumors of the testis: an immunohistochemical study of 87 cases. Am J Surg Pathol 39(10):1390–1394. https://doi.org/10.1097/PAS.0000000000000455

    Article  PubMed  Google Scholar 

  37. Chaboissier MC, Kobayashi A, Vidal VI, Lutzkendorf S, van de Kant HJ, Wegner M et al (2004) Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development 131(9):1891–1901. https://doi.org/10.1242/dev.01087

    Article  CAS  PubMed  Google Scholar 

  38. Chang H, Gao F, Guillou F, Taketo MM, Huff V, Behringer RR (2008) Wt1 negatively regulates beta-catenin signaling during testis development. Development 135(10):1875–1885. https://doi.org/10.1242/dev.018572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bremmer F, Behnes CL, Schildhaus HU, Gaisa NT, Reis H, Jarry H et al (2017) The role of beta-catenin mutation and SOX9 expression in sex cord-stromal tumours of the testis. Virchows Arch 470(4):421–428. https://doi.org/10.1007/s00428-017-2090-6

    Article  CAS  PubMed  Google Scholar 

Download references

Danksagung

Herrn Prof. Dr. med H.J. Radzun und Herrn Prof. Dr. med. P. Ströbel danke ich für ihre konsequente Unterstützung seit Beginn meiner wissenschaftlichen Karriere. Mein besonderer Dank gilt Herrn Dr. med. C.L. Behnes für die Zusammenarbeit bei unseren gemeinsamen Projekten. Darüber hinaus möchte ich Herrn PD Dr. rer. nat P. Thelen, Herrn Prof. Dr. med. S. Schweyer, Herrn Prof. Dr. rer. nat. P. Burfeind, Herrn Prof. Dr. rer nat. H. Jarry und Frau PD Dr. rer. nat S. Kaulfuß sowie Herrn PD Dr. B. Hemmerlein und Herrn PD Dr. Dr. F. Honecker für die Zusammenarbeit herzlich danken. Mein großer Dank gilt auch der Universitätsmedizin Göttingen, der Wilhelm-Sander-Stiftung (2016.041.1) sowie der Deutschen Forschungsgemeinschaft (BR 4700/1-1) für die finanzielle Unterstützung der bisherigen Projekte.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bremmer.

Ethics declarations

Interessenkonflikt

F. Bremmer gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

The supplement containing this article is not sponsored by industry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bremmer, F. Identifizierung von diagnostischen Tumormarkern und therapeutischen Zielstrukturen in Hodentumoren. Pathologe 39 (Suppl 2), 215–220 (2018). https://doi.org/10.1007/s00292-018-0493-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-018-0493-z

Schlüsselwörter

Keywords

Navigation