Skip to main content

Histopathologische Forschungslabors in der translationalen Forschung

Konzeption sowie Integration in die Infrastruktur pathologischer Institute

Histopathological research laboratories in translational research

Conception and integration into the infrastructure of pathological institutes

Zusammenfassung

Die systematische Auswertung histopathologischer Proben experimenteller Tiersysteme zur Modellierung humaner Erkrankungen stellt heute einen essenziellen Bestandteil hochwertiger biomedizinischer Forschung dar. Leider existieren für diesen erheblichen und zunehmenden Bedarf bisher nur wenige, gezielt ausgebildete Pathologen und kaum etablierte Infrastruktur, sodass sich insbesondere Pathologen an Universitätskliniken zunehmend und im Wesentlichen unvorbereitet mit diesen spezialisierten und zeitraubenden Aufgaben konfrontiert sehen. Dieser Artikel stellt ein neuartiges integriertes Laborkonzept, geführt von Tier- und Humanpathologen an der TU München vor, welches dieses Problem dauerhaft adressieren könnte. Die Laborstruktur wird detailliert mit einem etablierten histopathologischen Routinelabor verglichen und im Hinblick auf Gemeinsamkeiten, Unterschiede, Synergien sowie Vor- und Nachteile beleuchtet.

Abstract

A systematic review of histopathology from experimental animal systems is an essential part of up-to-date biomedical research. Pathologists at university hospitals are especially and increasingly challenged by these specialized and time-consuming duties. This article presents and analyzes a new laboratory structure of comparative experimental pathology—jointly lead by veterinary and human pathologists—which might solve this problem. The focus is on the establishment and full integration of this laboratory structure into a local, regional, and nationwide biomedical research cluster. A detailed comparison with an established structure of routine histopathology laboratories discusses merits and benefits as well as disadvantages.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Blank A, Dawson H, Hammer C et al (2017) Lean management in the pathology laboratory. Pathologe 38:540–544

    CAS  Article  Google Scholar 

  2. Bock BC, Stein U, Schmitt CA et al (2014) Mouse models of human cancer. Cancer Res 74:4671–4675

    Article  Google Scholar 

  3. Bundesministerium für Ernährung und Landwirtschaft (BMEL) Versuchstierdaten 2016. https://www.bmel.de/SharedDocs/Downloads/Tier/Tierschutz/Versuchstierdaten2016.pdf?__blob=publicationFile. Zugegriffen: 1. Juni 2018

  4. Cardiff RD, Miller CH, Munn RJ (2014) Analysis of mouse model pathology: a primer for studying the anatomic pathology of genetically engineered mice. Cold Spring Harb Protoc 2014:561–580

    PubMed  Google Scholar 

  5. Cardiff RD, Ward JM, Barthold SW (2008) ’One medicine—one pathology’: are veterinary and human pathology prepared? Lab Invest 88:18–26

    Article  Google Scholar 

  6. Christopher MM (2015) One health, one literature: weaving together veterinary and medical research. Sci Transl Med 7(303):303fs336. https://doi.org/10.1126/scitranslmed.aab0215

    Article  Google Scholar 

  7. Fang HY, Munch NS, Schottelius M et al (2018) CXCR4 is a potential target for diagnostic PET/CT imaging in Barrett’s dysplasia and esophageal adenocarcinoma. Clin Cancer Res 24:1048–1061

    CAS  Article  Google Scholar 

  8. Galuschka C, Proynova R, Roth B et al (2017) Models in translational oncology: a public resource database for preclinical cancer research. Cancer Res 77:2557–2563

    CAS  Article  Google Scholar 

  9. Gengenbacher N, Singhal M, Augustin HG (2017) Preclinical mouse solid tumour models: status quo, challenges and perspectives. Nat Rev Cancer 17:751–765

    CAS  Article  Google Scholar 

  10. Gibson-Corley KN, Hochstedler C, Sturm M et al (2012) Successful integration of the histology core laboratory in translational research. J Histotechnol 35:17–21

    Article  Google Scholar 

  11. Gibson-Corley KN, Olivier AK, Meyerholz DK (2013) Principles for valid histopathologic scoring in research. Vet Pathol 50:1007–1015

    CAS  Article  Google Scholar 

  12. Habringer S, Lapa C, Herhaus P et al (2018) Dual targeting of acute leukemia and supporting niche by CXCR4-directed theranostics. Theranostics 8:369–383

    CAS  Article  Google Scholar 

  13. Heid I, Steiger K, Trajkovic-Arsic M et al (2017) Co-clinical assessment of tumor cellularity in pancreatic cancer. Clin Cancer Res 23:1461–1470

    CAS  Article  Google Scholar 

  14. Ince TA, Ward JM, Valli VE et al (2008) Do-it-yourself (DIY) pathology. Nat Biotechnol 26:978–979 (discussion 979)

    CAS  Article  Google Scholar 

  15. Jabs M, Rose AJ, Lehmann LH et al (2018) Inhibition of endothelial notch signaling impairs fatty acid transport and leads to metabolic and vascular remodeling of the adult heart. Circulation 137(24):2592–2608. https://doi.org/10.1161/circulationaha.117.029733

    CAS  Article  PubMed  Google Scholar 

  16. Klopfleisch R (2013) Multiparametric and semiquantitative scoring systems for the evaluation of mouse model histopathology—a systematic review. BMC Vet Res 9:123

    Article  Google Scholar 

  17. Lang TA, Talerico C, Siontis GCM (2012) Documenting clinical and laboratory images in publications: the CLIP principles. Chest 141:1626–1632

    Article  Google Scholar 

  18. Mueller S, Engleitner T, Maresch R et al (2018) Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature 554:62–68

    CAS  Article  Google Scholar 

  19. Olivier AK, Naumann P, Goeken A et al (2012) Genetically modified species in research: opportunities and challenges for the histology core laboratory. J Histotechnol 35:63–67

    Article  Google Scholar 

  20. Rodriguez-Canales J, Eberle FC, Jaffe ES et al (2011) Why is it crucial to reintegrate pathology into cancer research? Bioessays 33:490–498

    Article  Google Scholar 

  21. Scudamore CL, Soilleux EJ, Karp NA et al (2016) Recommendations for minimum information for publication of experimental pathology data: MINPEPA guidelines. J Pathol 238:359–367

    Article  Google Scholar 

  22. Ward JM, Schofield PN, Sundberg JP (2017) Reproducibility of histopathological findings in experimental pathology of the mouse: a sorry tail. Lab Animal 46:146–151

    Article  Google Scholar 

  23. Wartewig T, Kurgyis Z, Keppler S et al (2017) PD-1 is a haploinsufficient suppressor of T cell lymphomagenesis. Nature 552:121–125

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Warth A, Stenzinger A, Andrulis M et al (2016) Individualized medicine and demographic change as determining workload factors in pathology: quo vadis? Virchows Arch 468:101–108

    Article  Google Scholar 

  25. Wieland E, Rodriguez-Vita J, Liebler SS et al (2017) Endothelial notch1 activity facilitates metastasis. Cancer Cell 31:355–367

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Steiger.

Ethics declarations

Interessenkonflikt

K. Steiger, S. Ballke, H.-Y. Yen, O. Seelbach, A. Alkhamas, M. Boxberg, K. Schwamborn, P. A. Knolle, W. Weichert und C. Mogler geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

H.A. Baba, Essen

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Steiger, K., Ballke, S., Yen, HY. et al. Histopathologische Forschungslabors in der translationalen Forschung. Pathologe 40, 172–178 (2019). https://doi.org/10.1007/s00292-018-0458-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-018-0458-2

Schlüsselwörter

  • Pathologie
  • Forschung
  • Veterinärpathologie
  • Medizinische Laborwissenschaften
  • Versuchstierkunde

Keywords

  • Pathology
  • Research
  • Pathology, Veterinary
  • Medical Laboratory Science
  • Laboratory Animal Science