Advertisement

Der Pathologe

, Volume 39, Issue 2, pp 154–163 | Cite as

Ewing-Sarkome und Ewing-artige Sarkome

Neue Aspekte
  • K. Specht
  • W. Hartmann
Schwerpunkt: Knorpel, Knochen, Chorda – Molekulare Pathologie

Zusammenfassung

Sarkome der Ewing-Familie sind aggressive Tumoren, die im Knochen und Weichgewebe zumeist bei Kindern und jungen Erwachsenen auftreten. Pathognomonisch für klassische Ewing-Sarkome sind Fusionen zwischen einem Gen der RNA-bindenden TET-Familie (EWSR1 oder FUS) mit einem Gen der ETS-Transkriptionsfaktor-Familie (FLI1, ERG, ETV1, ETV4 oder FEV). In den letzten Jahren wurden neben klassischen Ewing-Tumoren rundzellige Sarkome identifiziert, die bei teilweise überlappender Morphologie und immunhistochemischem Profil aus praktischen und therapeutischen Erwägungen als „Ewing-Sarkom-artig“ eingestuft wurden. Zu diesen Tumoren gehören sowohl die sehr seltenen Sarkome mit Fusion von EWSR1 mit non-ETS-Genen (NFATC2, POU5F1, SMARCA5, PATZ, ZSG, SP3) als auch rundzellige Sarkome mit neu charakterisierten molekularen Veränderungen wie einer CIC-DUX4-Fusion oder BCOR-Alterationen mit jeweils distinkten Genexpressionssignaturen und unterschiedlicher Klinik. Im Gegensatz zu klassischen Ewing-Sarkomen ist das morphologische Spektrum dieser neuen Tumorentitäten sehr viel breiter und umfasst neben rundzelligen auch spindelzellige und myxoide Tumorareale. Das immunhistochemische Profil mit inkonsistenter CD99-Expression erschwert zusätzlich die diagnostische Einordnung und führt zu einer beträchtlichen Erweiterung des in der Routinediagnostik anzuwendenden immunhistochemischen Panels, der molekularen Aufarbeitung und damit zu einer Änderung des diagnostischen Algorithmus. Das zukünftige Therapiemanagement dieser neu definierten rundzelligen Sarkome sowie die Charakterisierung möglicher neuer, bisher nicht bekannter genetischer Aberrationen zur weiteren molekularen Subklassifikation sind Gegenstand intensiver Forschungsanstrengungen.

Schlüsselwörter

Ewing-Sarkom Genrearrangement Rundzelliges Sarkom Periphere primitive neuroektodermale Tumoren EWSR1 

Ewing sarcomas and Ewing-like sarcomas

New aspects

Abstract

Sarcomas of the Ewing family of tumors are aggressive neoplasms occurring in bone and soft tissue of mostly children and young adults. Classical Ewing sarcomas are pathognomonically characterized by fusions between a gene of the RNA-binding TET family (EWSR1 or FUS) with a gene of the ETS-transcription family (FLI1, ERG, ETV1, ETV4 or FEV). Less frequent cases designated as Ewing-like sarcomas show different genetic rearrangements between EWSR1 and non-ETS genes (NFATC2, POU5F1, SMARCA5, PATZ, ZSG, SP3). Moreover, new molecular alterations biologically unrelated to Ewing sarcomas have recently been described in the category of undifferentiated round cell sarcomas including CIC-DUX4 fusions or BCOR alterations, each carrying unique gene expression signatures. In contrast to classical Ewing sarcomas, the morphologic spectrum of these tumor entities is much broader and includes round cell areas as well as spindled and myxoid components. The immunohistochemical profile with inconsistent CD99 positivity makes diagnosis more difficult and requires the use of a broad spectrum of antibodies and elaborate molecular work-up. Further studies for future therapeutic decision making in these newly described round cell sarcomas as well as for molecular subclassification of undifferentiated round cell sarcomas are ongoing.

Keywords

Ewing Sarcoma Gene rearrangement Round cell sarcoma Peripheral primitive neuroectodermal tumors EWSR1 

Notes

Danksagung

Wir danken Herrn Thomas Engleitner für die Erstellung der Grafik in Abb. 1.

Einhaltung ethischer Richtlinien

Interessenkonflikt

K. Specht und W. Hartmann geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Ambros IM, Ambros PF, Strehl S, Kovar H, Gadner H, Salzer-Kuntschik M (1991) MIC2 is a specific marker for Ewing’s sarcoma and peripheral primitive neuroectodermal tumors. Evidence for a common histogenesis of Ewing’s sarcoma and peripheral primitive neuroectodermal tumors from MIC2 expression and specific chromosome aberration. Cancer 67:1886–1893CrossRefPubMedGoogle Scholar
  2. 2.
    Antonescu C (2014) Round cell sarcomas beyond Ewing: emerging entities. Histopathology 64:26–37CrossRefPubMedGoogle Scholar
  3. 3.
    Antonescu CR, Sung YS, Chen CL, Zhang L, Chen HW, Singer S, Agaram NP, Sboner A, Fletcher CD (2014) Novel ZC3H7B-BCOR, MEAF6-PHF1, and EPC1-PHF1 fusions in ossifying fibromyxoid tumors – molecular characterization shows genetic overlap with endometrial stromal sarcoma. Genes Chromosomes Cancer 53:183–193CrossRefPubMedGoogle Scholar
  4. 4.
    Antonescu CR, Owosho AA, Zhang L, Chen S, Deniz K, Huryn JM, Kao YC, Huang SC, Singer S, Tap W, Schaefer IM, Fletcher CD (2017) Sarcomas with CIC-rearrangements are a distinct pathologic entity with aggressive outcome: a clinicopathologic and molecular study of 115 cases. Am J Surg Pathol 41:941–949CrossRefPubMedGoogle Scholar
  5. 5.
    Bettegowda C, Agrawal N, Jiao Y, Sausen M, Wood LD, Hruban RH, Rodriguez FJ, Cahill DP, McLendon R, Riggins G, Velculescu VE, Oba-Shinjo SM, Marie SK, Vogelstein B, Bigner D, Yan H, Papadopoulos N, Kinzler KW (2011) Mutations in CIC and FUBP1 contribute to human oligodendroglioma. Science 333:1453–1455CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404CrossRefPubMedGoogle Scholar
  7. 7.
    Chen S, Deniz K, Sung YS, Zhang L, Dry S, Antonescu CR (2016) Ewing sarcoma with ERG gene rearrangements: a molecular study focusing on the prevalence of FUS-ERG and common pitfalls in detecting EWSR1-ERG fusions by FISH. Genes Chromosomes Cancer 55:340–349CrossRefPubMedGoogle Scholar
  8. 8.
    Cohen-Gogo S, Cellier C, Coindre JM, Mosseri V, Pierron G, Guillemet C, Italiano A, Brugieres L, Orbach D, Laurence V, Delattre O, Michon J (2014) Ewing-like sarcomas with BCOR-CCNB3 fusion transcript: a clinical, radiological and pathological retrospective study from the Societe Francaise des Cancers de L’Enfant. Pediatr Blood Cancer 61:2191–2198CrossRefPubMedGoogle Scholar
  9. 9.
    Collini P, Sampietro G, Bertulli R, Casali PG, Luksch R, Mezzelani A, Sozzi G, Pilotti S (2001) Cytokeratin immunoreactivity in 41 cases of ES/PNET confirmed by molecular diagnostic studies. Am J Surg Pathol 25:273–274CrossRefPubMedGoogle Scholar
  10. 10.
    Damm F, Chesnais V, Nagata Y, Yoshida K, Scourzic L, Okuno Y, Itzykson R, Sanada M, Shiraishi Y, Gelsi-Boyer V, Renneville A, Miyano S, Mori H, Shih LY, Park S, Dreyfus F, Guerci-Bresler A, Solary E, Rose C, Cheze S, Prebet T, Vey N, Legentil M, Duffourd Y, de Botton S, Preudhomme C, Birnbaum D, Bernard OA, Ogawa S, Fontenay M, Kosmider O (2013) BCOR and BCORL1 mutations in myelodysplastic syndromes and related disorders. Blood 122:3169–3177CrossRefPubMedGoogle Scholar
  11. 11.
    Le Deley MC, Delattre O, Schaefer KL, Burchill SA, Koehler G, Hogendoorn PC, Lion T, Poremba C, Marandet J, Ballet S, Pierron G, Brownhill SC, Nesslbock M, Ranft A, Dirksen U, Oberlin O, Lewis IJ, Craft AW, Jurgens H, Kovar H (2010) Impact of EWS-ETS fusion type on disease progression in Ewing’s sarcoma/peripheral primitive neuroectodermal tumor: prospective results from the cooperative Euro-E.W.I.N.G. 99 trial. J Clin Oncol 28:1982–1988CrossRefPubMedGoogle Scholar
  12. 12.
    Fan Z, Yamaza T, Lee JS, Yu J, Wang S, Fan G, Shi S, Wang CY (2009) BCOR regulates mesenchymal stem cell function by epigenetic mechanisms. Nat Cell Biol 11:1002–1009CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Folpe AL, Hill CE, Parham DM, O’Shea PA, Weiss SW (2000) Immunohistochemical detection of FLI-1 protein expression: a study of 132 round cell tumors with emphasis on CD99-positive mimics of Ewing’s sarcoma/primitive neuroectodermal tumor. Am J Surg Pathol 24:1657–1662CrossRefPubMedGoogle Scholar
  14. 14.
    Ginsberg JP, de Alava E, Ladanyi M, Wexler LH, Kovar H, Paulussen M, Zoubek A, Dockhorn-Dworniczak B, Juergens H, Wunder JS, Andrulis IL, Malik R, Sorensen PH, Womer RB, Barr FG (1999) EWS-FLI1 and EWS-ERG gene fusions are associated with similar clinical phenotypes in Ewing’s sarcoma. J Clin Oncol 17:1809–1814CrossRefPubMedGoogle Scholar
  15. 15.
    Goldblum JR, Machen SK, Fisher C (2000) Cytokeratins in round cell sarcomas. Am J Surg Pathol 24:1174–1175CrossRefPubMedGoogle Scholar
  16. 16.
    Graham C, Chilton-MacNeill S, Zielenska M, Somers GR (2012) The CIC-DUX4 fusion transcript is present in a subgroup of pediatric primitive round cell sarcomas. Hum Pathol 43:180–189CrossRefPubMedGoogle Scholar
  17. 17.
    Grossmann V, Tiacci E, Holmes AB, Kohlmann A, Martelli MP, Kern W, Spanhol-Rosseto A, Klein HU, Dugas M, Schindela S, Trifonov V, Schnittger S, Haferlach C, Bassan R, Wells VA, Spinelli O, Chan J, Rossi R, Baldoni S, De Carolis L, Goetze K, Serve H, Peceny R, Kreuzer KA, Oruzio D, Specchia G, Di Raimondo F, Fabbiano F, Sborgia M, Liso A, Farinelli L, Rambaldi A, Pasqualucci L, Rabadan R, Haferlach T, Falini B (2011) Whole-exome sequencing identifies somatic mutations of BCOR in acute myeloid leukemia with normal karyotype. Blood 118:6153–6163CrossRefPubMedGoogle Scholar
  18. 18.
    Le Guellec S, Velasco V, Perot G, Watson S, Tirode F, Coindre JM (2016) ETV4 is a useful marker for the diagnosis of CIC-rearranged undifferentiated round-cell sarcomas: a study of 127 cases including mimicking lesions. Mod Pathol 29:1523–1531CrossRefPubMedGoogle Scholar
  19. 19.
    Harms D, Leuschner I, Krams M, Pilgrim TB, Treuner J (1998) Rhabdomyosarcoma and extraosseous Ewing’s sarcoma. Verh Dtsch Ges Pathol 82:83–98PubMedGoogle Scholar
  20. 20.
    Hilton EN, Manson FD, Urquhart JE, Johnston JJ, Slavotinek AM, Hedera P, Stattin EL, Nordgren A, Biesecker LG, Black GC (2007) Left-sided embryonic expression of the BCL-6 corepressor, BCOR, is required for vertebrate laterality determination. Hum Mol Genet 16:1773–1782CrossRefPubMedGoogle Scholar
  21. 21.
    Hung YP, Fletcher CD, Hornick JL (2016) Evaluation of ETV4 and WT1 expression in CIC-rearranged sarcomas and histologic mimics. Mod Pathol 29:1324–1334CrossRefPubMedGoogle Scholar
  22. 22.
    Hung YP, Fletcher CD, Hornick JL (2016) Evaluation of NKX2-2 expression in round cell sarcomas and other tumors with EWSR1 rearrangement: imperfect specificity for Ewing sarcoma. Mod Pathol 29:370–380CrossRefPubMedGoogle Scholar
  23. 23.
    Jimenez G, Guichet A, Ephrussi A, Casanova J (2000) Relief of gene repression by torso RTK signaling: role of capicua in drosophila terminal and dorsoventral patterning. Genes Dev 14:224–231PubMedPubMedCentralGoogle Scholar
  24. 24.
    Kao YC, Sung YS, Zhang L, Jungbluth AA, Huang SC, Argani P, Agaram NP, Zin A, Alaggio R, Antonescu CR (2016) BCOR overexpression is a highly sensitive marker in round cell sarcomas with BCOR genetic abnormalities. Am J Surg Pathol 40:1670–1678CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kao YC, Sung YS, Chen CL, Zhang L, Dickson BC, Swanson D, Vaiyapuri S, Latif F, Alholle A, Huang SC, Hornick JL, Antonescu CR (2017) ETV transcriptional upregulation is more reliable than RNA sequencing algorithms and FISH in diagnosing round cell sarcomas with CIC gene rearrangements. Genes Chromosomes Cancer 56:501–510CrossRefPubMedGoogle Scholar
  26. 26.
    Kawamura-Saito M, Yamazaki Y, Kaneko K, Kawaguchi N, Kanda H, Mukai H, Gotoh T, Motoi T, Fukayama M, Aburatani H, Takizawa T, Nakamura T (2006) Fusion between CIC and DUX4 up-regulates PEA3 family genes in Ewing-like sarcomas with t(4;19)(q35;q13) translocation. Hum Mol Genet 15:2125–2137CrossRefPubMedGoogle Scholar
  27. 27.
    Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lee CJ, Chan WI, Scotting PJ (2005) CIC, a gene involved in cerebellar development and ErbB signaling, is significantly expressed in medulloblastomas. J Neurooncol 73:101–108CrossRefPubMedGoogle Scholar
  29. 29.
    Lumadue JA, Askin FB, Perlman EJ (1994) MIC2 analysis of small cell carcinoma. Am J Clin Pathol 102:692–694CrossRefPubMedGoogle Scholar
  30. 30.
    van der Maarel SM, Tawil R, Tapscott SJ (2011) Facioscapulohumeral muscular dystrophy and DUX4: breaking the silence. Trends Mol Med 17:252–258CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Machado I, Navarro S, Picci P, Llombart-Bosch A (2016) The utility of SATB2 immunohistochemical expression in distinguishing between osteosarcomas and their malignant bone tumor mimickers, such as Ewing sarcomas and chondrosarcomas. Pathol Res Pract 212:811–816CrossRefPubMedGoogle Scholar
  32. 32.
    Marino-Enriquez A, Fletcher CD (2014) Round cell sarcomas – biologically important refinements in subclassification. Int J Biochem Cell Biol 53:493–504CrossRefPubMedGoogle Scholar
  33. 33.
    McElhinny AS, Li JL, Wu L (2008) Mastermind-like transcriptional co-activators: emerging roles in regulating cross talk among multiple signaling pathways. Oncogene 27:5138–5147CrossRefPubMedGoogle Scholar
  34. 34.
    Ng D, Thakker N, Corcoran CM, Donnai D, Perveen R, Schneider A, Hadley DW, Tifft C, Zhang L, Wilkie AO, van der Smagt JJ, Gorlin RJ, Burgess SM, Bardwell VJ, Black GC, Biesecker LG (2004) Oculofaciocardiodental and Lenz microphthalmia syndromes result from distinct classes of mutations in BCOR. Nat Genet 36:411–416CrossRefPubMedGoogle Scholar
  35. 35.
    Panagopoulos I, Thorsen J, Gorunova L, Haugom L, Bjerkehagen B, Davidson B, Heim S, Micci F (2013) Fusion of the ZC3H7B and BCOR genes in endometrial stromal sarcomas carrying an X;22-translocation. Genes Chromosomes Cancer 52:610–618CrossRefPubMedGoogle Scholar
  36. 36.
    Parham DM, Hijazi Y, Steinberg SM, Meyer WH, Horowitz M, Tzen CY, Wexler LH, Tsokos M (1999) Neuroectodermal differentiation in Ewing’s sarcoma family of tumors does not predict tumor behavior. Hum Pathol 30:911–918CrossRefPubMedGoogle Scholar
  37. 37.
    Peters TL, Kumar V, Polikepahad S, Lin FY, Sarabia SF, Liang Y, Wang WL, Lazar AJ, Doddapaneni H, Chao H, Muzny DM, Wheeler DA, Okcu MF, Plon SE, Hicks MJ, Lopez-Terrada D, Parsons DW, Roy A (2015) BCOR-CCNB3 fusions are frequent in undifferentiated sarcomas of male children. Mod Pathol 28:575–586CrossRefPubMedGoogle Scholar
  38. 38.
    Pierron G, Tirode F, Lucchesi C, Reynaud S, Ballet S, Cohen-Gogo S, Perrin V, Coindre JM, Delattre O (2012) A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion. Nat Genet 44:461–466CrossRefPubMedGoogle Scholar
  39. 39.
    Pugh TJ, Weeraratne SD, Archer TC, Pomeranz Krummel DA, Auclair D, Bochicchio J, Carneiro MO, Carter SL, Cibulskis K, Erlich RL, Greulich H, Lawrence MS, Lennon NJ, McKenna A, Meldrim J, Ramos AH, Ross MG, Russ C, Shefler E, Sivachenko A, Sogoloff B, Stojanov P, Tamayo P, Mesirov JP, Amani V, Teider N, Sengupta S, Francois JP, Northcott PA, Taylor MD, Yu F, Crabtree GR, Kautzman AG, Gabriel SB, Getz G, Jager N, Jones DT, Lichter P, Pfister SM, Roberts TM, Meyerson M, Pomeroy SL, Cho YJ (2012) Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 488:106–110CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Puls F, Niblett A, Marland G, Gaston CL, Douis H, Mangham DC, Sumathi VP, Kindblom LG (2014) BCOR-CCNB3 (Ewing-like) sarcoma: a clinicopathologic analysis of 10 cases, in comparison with conventional Ewing sarcoma. Am J Surg Pathol 38:1307–1318CrossRefPubMedGoogle Scholar
  41. 41.
    Righi A, Gambarotti M, Longo S, Benini S, Gamberi G, Cocchi S, Vanel D, Picci P, Bertoni F, Simoni A, Franchi A, Dei Tos AP (2015) Small cell osteosarcoma: clinicopathologic, immunohistochemical, and molecular analysis of 36 cases. Am J Surg Pathol 39:691–699CrossRefPubMedGoogle Scholar
  42. 42.
    Romeo S, Dei Tos AP (2010) Soft tissue tumors associated with EWSR1 translocation. Virchows Arch 456:219–234CrossRefPubMedGoogle Scholar
  43. 43.
    Sankar S, Lessnick SL (2011) Promiscuous partnerships in Ewing’s sarcoma. Cancer Genet 204:351–365CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Schmidt D, Herrmann C, Jurgens H, Harms D (1991) Malignant peripheral neuroectodermal tumor and its necessary distinction from Ewing’s sarcoma. A report from the Kiel Pediatric Tumor Registry. Cancer 68:2251–2259CrossRefPubMedGoogle Scholar
  45. 45.
    Shibuya R, Matsuyama A, Nakamoto M, Shiba E, Kasai T, Hisaoka M (2014) The combination of CD99 and NKX2.2, a transcriptional target of EWSR1-FLI1, is highly specific for the diagnosis of Ewing sarcoma. Virchows Arch 465:599–605CrossRefPubMedGoogle Scholar
  46. 46.
    Siegele B, Roberts J, Black JO, Rudzinski E, Vargas SO, Galambos C (2017) DUX4 immunohistochemistry is a highly sensitive and specific marker for CIC-DUX4 fusion-positive round cell tumor. Am J Surg Pathol 41:423–429CrossRefPubMedGoogle Scholar
  47. 47.
    Smith SC, Palanisamy N, Martin E, Almenara J, McHugh JB, Choi EK, Lucas DR, Betz BL, Thomas D, Patel RM (2017) The utility of ETV1, ETV4 and ETV5 RNA in-situ hybridization in the diagnosis of CIC-DUX sarcomas. Histopathology 70:657–663CrossRefPubMedGoogle Scholar
  48. 48.
    Solomon DA, Brohl AS, Khan J, Miettinen M (2014) Clinicopathologic features of a second patient with Ewing-like sarcoma harboring CIC-FOXO4 gene fusion. Am J Surg Pathol 38:1724–1725CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Specht K, Sung YS, Zhang L, Richter GH, Fletcher CD, Antonescu CR (2014) Distinct transcriptional signature and immunoprofile of CIC-DUX4 fusion-positive round cell tumors compared to EWSR1-rearranged Ewing sarcomas: further evidence toward distinct pathologic entities. Genes Chromosomes Cancer 53:622–633CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Specht K, Zhang L, Sung YS, Nucci M, Dry S, Vaiyapuri S, Richter GH, Fletcher CD, Antonescu CR (2016) Novel BCOR-MAML3 and ZC3H7B-BCOR gene fusions in undifferentiated small blue round cell sarcomas. Am J Surg Pathol 40:433–442CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Tirode F, Surdez D, Ma X, Parker M, Le Deley MC, Bahrami A, Zhang Z, Lapouble E, Grossetete-Lalami S, Rusch M, Reynaud S, Rio-Frio T, Hedlund E, Wu G, Chen X, Pierron G, Oberlin O, Zaidi S, Lemmon G, Gupta P, Vadodaria B, Easton J, Gut M, Ding L, Mardis ER, Wilson RK, Shurtleff S, Laurence V, Michon J, Marec-Berard P, Gut I, Downing J, Dyer M, Zhang J, Delattre O, St. Jude Children’s Research Hospital-Washington University Pediatric Cancer Genome P, the International Cancer Genome Consortium (2014) Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations. Cancer Discov C(4):1342–1353CrossRefGoogle Scholar
  52. 52.
    Sugita S, Arai Y, Tonooka A, Hama N, Totoki Y, Fujii T, Aoyama T, Asanuma H, Tsukahara T, Kaya M, Shibata T, Hasegawa T (2014) A novel CIC-FOXO4 gene fusion in undifferentiated small round cell sarcoma: a genetically distinct variant of Ewing-like sarcoma. Am J Surg Pathol 38:1571–1576CrossRefPubMedGoogle Scholar
  53. 53.
    Tsokos M (1992) Peripheral primitive neuroectodermal tumors. Diagnosis, classification, and prognosis. Perspect Pediatr Pathol 16:27–98PubMedGoogle Scholar
  54. 54.
    Wang WL, Patel NR, Caragea M, Hogendoorn PC, Lopez-Terrada D, Hornick JL, Lazar AJ (2012) Expression of ERG, an Ets family transcription factor, identifies ERG-rearranged Ewing sarcoma. Mod Pathol 25:1378–1383CrossRefPubMedGoogle Scholar
  55. 55.
    Wang X, Bledsoe KL, Graham RP, Asmann YW, Viswanatha DS, Lewis JE, Lewis JT, Chou MM, Yaszemski MJ, Jen J, Westendorf JJ, Oliveira AM (2014) Recurrent PAX3-MAML3 fusion in biphenotypic sinonasal sarcoma. Nat Genet 46:666–668CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Yamamoto Y, Tsuzuki S, Tsuzuki M, Handa K, Inaguma Y, Emi N (2010) BCOR as a novel fusion partner of retinoic acid receptor alpha in a t(X;17)(p11;q12) variant of acute promyelocytic leukemia. Blood 116:4274–4283CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Allgemeine Pathologie und Pathologische AnatomieTechnische Universität MünchenMünchenDeutschland
  2. 2.Gerhard-Domagk-Institut für PathologieUniversitätsklinikum MünsterMünsterDeutschland

Personalised recommendations