Advertisement

Der Pathologe

, Volume 39, Issue 2, pp 117–124 | Cite as

Notochordale Tumoren

Benigne notochordale Tumoren und Chordome
  • T. F. E. Barth
  • A. von Witzleben
  • P. Möller
  • S. Scheil-Bertram
Schwerpunkt: Knorpel, Knochen, Chorda – Molekulare Pathologie
  • 320 Downloads

Zusammenfassung

Benigne notochordale Tumoren (BNCT) und Chordome sind primäre intraossäre Tumoren, die entlang des Achsenskeletts entstehen und ihre höchste Inzidenz im Sakrum, gefolgt vom Clivus und den thorakalen Wirbelkörpern haben. Neben der klassischen Variante (NOS [„not otherwise specified“] mit hepatoider und nierenzellkarzinom-ähnlichen Varianten) sind eine chondroide Differenzierung sowie Chordome mit polymorpher bis anaplastischer Morphologie beschrieben. Besonders ungünstige Formen sind pädiatrische Chordome mit typischem INI1-Verlust. BNCT und Chordome sind charakterisiert durch folgendes immunhistologisches Profil: Vimentin+, Breitbandzytokeratin+/−, epitheliales membranes Antigen (EMA)+/−, S100-Protein+/+, Brachyury+ und lassen sich so immunhistologisch eindeutig definieren und abgrenzen von Chondrosarkomen, chordoiden Meningiomen und Karzinommetastasen.

Schlüsselwörter

Brachyury Chordom Immunhistochemie Differenzialdiagnose 

Notochordal tumors

Benign notochordal tumors and chordomas

Abstract

Benign notochordal tumors (BNCT) and chordomas are primary bone tumors of the spine with a predominant localization in the sacrum and clival region followed by the vertebral bodies. Besides the most common variant (NOS [not otherwise specified] with hepatoid or renal carcinoma cell-like differentiation) chordomas with chondroid, and polymorphic to anaplastic morphology are described. An unfavorable variant are pediatric chordomas with a loss of INI-1. BNCT and chordomas are characterized by the following immunohistological profile: vimentin+, cytokeratin+/−, epithelial membrane antigen (EMA)+/−, S100 protein+/−, brachyury+. This profile helps to distinguish these tumors from other lesions such as chondrosarcoma, chordoid meningioma, and metastases of carcinoma.

Keywords

Brachyury Chordoma Immunohistochemistry Differential diagnosis 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

T. F. E. Barth, A. von Witzleben, P. Möller und S. Scheil-Bertram geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Bergh P, Kindblom LG, Gunterberg B et al (2000) Prognostic factors in chordoma of the sacrum and mobile spine: a study of 39 patients. Cancer 88:2122–2134CrossRefPubMedGoogle Scholar
  2. 2.
    Brüderlein S, Sommer JB, Meltzer PS et al (2010) Molecular characterization of putative chordoma cell lines. Sarcoma 2010:1–14CrossRefGoogle Scholar
  3. 3.
    Choudhri O, Feroze A, Hwang P et al (2014) Endoscopic resection of a giant intradural retroclival ecchordosis physaliphora: surgical technique and literature review. World Neurosurg 82(912):e21–26.  https://doi.org/10.1016/j.wneu.2014.06.019 Google Scholar
  4. 4.
    Dobrovolskaia-Zavadskaia N (1927) C R Soc Biol 97:114–116Google Scholar
  5. 5.
    Flanagan AM, Yamaguchi T (2013) Chordoma. In: Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F (Hrsg) World Health Organization classification of tumours. Pathology and genetics of tumours of soft tissue and bone. IARC Press, Lyon, S 328–329Google Scholar
  6. 6.
    Flanagan AM, Yamaguchi T (2013) Chordoma. In: Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F (eds) WHO Classification of Tumors and Soft Tissue and Bones. IRAC, Lyon, p 328–329Google Scholar
  7. 7.
    Freyschmidt J, Ostertag H, Jundt G (2010) Knochentumoren mit Kiefertumoren. Springer, Berlin, Heidelberg, S 722–738CrossRefGoogle Scholar
  8. 8.
    Hasselblatt M, Thomas C, Hovestadt V et al (2016) Poorly differentiated chordoma with SMARCB1/INI1 loss: a distinct molecular entity with dismal prognosis. Acta Neuropathol 132:149–151.  https://doi.org/10.1007/s00401-016-1574-9 CrossRefPubMedGoogle Scholar
  9. 9.
    Herrmann BG, Kispert A (1994) The T genes in embryogenesis. Trends Genet 10(8):280–286CrossRefPubMedGoogle Scholar
  10. 10.
    Herrmann BG, Labeit S, Poustka A et al (1990) Cloning of the T gene required in mesoderm formation in the mouse. Nature 343:617–622.  https://doi.org/10.1038/343617a0 CrossRefPubMedGoogle Scholar
  11. 11.
    Horbinski C, Oakley GJ, Cieply K et al (2010) The prognostic value of Ki-67, p53, epidermal growth factor receptor, 1p36, 9p21, 10q23, and 17p13 in skull base chordomas. Arch Pathol Lab Med 134:1170–1176PubMedPubMedCentralGoogle Scholar
  12. 12.
    Hsu W, Mohyeldin A, Shah SR et al (2011) Generation of chordoma cell line JHC7 and the identification of Brachyury as a novel molecular target. J Neurosurg 115:760–769CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Joshi VV (2000) Peripheral neuroblastic tumors: pathologic classification based on recommendations of international neuroblastoma pathology committee (Modification of shimada classification). Pediatr Dev Pathol 3:184–199CrossRefPubMedGoogle Scholar
  14. 14.
    Kyriakos M (2011) Benign notochordal lesions of the axial skeleton: a review and current appraisal. Skelet Radiol 40(9):1141–1152CrossRefPubMedGoogle Scholar
  15. 15.
    Mehnert F, Beschorner R, Küker W et al (2004) Retroclival ecchordosis physaliphora: MR imaging and review of the literature. AJNR Am J Neuroradiol 25:1851–1855PubMedGoogle Scholar
  16. 16.
    Miettinen M, Wang Z, Lasota J et al (2015) Nuclear Brachyury expression is consistent in chordoma, common in germ cell tumors and small cell carcinomas, and rare in other carcinomas and sarcomas: an immunohistochemical study of 5229 cases. Am J Surg Pathol 39:1305–1312.  https://doi.org/10.1097/PAS.0000000000000462 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mirra JM, Brien EW (2001) Giant notochordal hamartoma of intraosseous origin: a newly reported benign entity to be distinguished from chordoma. Report of two cases. Skeletal Radiol 30:698–709.  https://doi.org/10.1007/s002560100422 CrossRefPubMedGoogle Scholar
  18. 18.
    Mobley BC, McKenney JK, Bangs CD et al (2010) Loss of SMARCB1/INI1 expression in poorly differentiated chordomas. Acta Neuropathol 120:745–753.  https://doi.org/10.1007/s00401-010-0767-x CrossRefPubMedGoogle Scholar
  19. 19.
    Müller H (1858) Ueber das Vorkommen von Resten der Chorda dorsalis bei Menschen nach der Geburt und ueber ihr Verhältnis zu den Gallertgeschwulsten am Clivus. Z Rat Med 2:202Google Scholar
  20. 20.
    Naka T, Boltze C, Kuester D et al (2005) Intralesional fibrous septum in chordoma: a clinicopathologic and immunohistochemical study of 122 lesions. Am J Clin Pathol 124:288–294CrossRefPubMedGoogle Scholar
  21. 21.
    Nelson AC, Pillay N, Henderson S et al (2012) An integrated functional genomics approach identifies the regulatory network directed by brachyury (T) in chordoma. J Pathol 228:274–285.  https://doi.org/10.1002/path.4082 CrossRefPubMedGoogle Scholar
  22. 22.
    Oakley GJ, Fuhrer K, Seethala RR (2008) Brachyury, SOX-9, and podoplanin, new markers in the skull base chordoma vs chondrosarcoma differential: a tissue microarray-based comparative analysis. Mod Pathol 21:1461–1469.  https://doi.org/10.1038/modpathol.2008.144 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ramesh T, Nagula SV, Tardieu GG et al (2017) Update on the notochord including its embryology, molecular development, and pathology: a primer for the clinician. Cureus.  https://doi.org/10.7759/cureus.1137 Google Scholar
  24. 24.
    Rinner B, Froehlich EV, Buerger K et al (2012) Establishment and detailed functional and molecular genetic characterisation of a novel sacral chordoma cell line, MUG-Chor1. Int J Oncol 40:443–451PubMedGoogle Scholar
  25. 25.
    Rotondo M, Natale M, Mirone G et al (2007) A rare symptomatic presentation of ecchordosis physaliphora: neuroradiological and surgical management. J Neurol Neurosurg Psychiatr 78:647–649.  https://doi.org/10.1136/jnnp.2006.109561 CrossRefGoogle Scholar
  26. 26.
    Salisbury JR, Deverell MH, Cookson MJ, Whimster WF (1993) Three-dimensional reconstruction of human embryonic notochords: clue to the pathogenesis of chordoma. J Pathol 171:59–62.  https://doi.org/10.1002/path.1711710112 CrossRefPubMedGoogle Scholar
  27. 27.
    Scheil S, Brüderlein S, Liehr T et al (2001) Genome-wide analysis of sixteen chordomas by comparative genomic hybridization and cytogenetics of the first human chordoma cell line, U‑CH1. Genes Chromosomes Cancer 32:203–211CrossRefPubMedGoogle Scholar
  28. 28.
    Shen J, Li C‑D, Yang H‑L et al (2011) Classic chordoma coexisting with benign notochordal cell rest demonstrating different immunohistological expression patterns of brachyury and galectin-3. J Clin Neurosci 18:96–99.  https://doi.org/10.1016/j.jocn.2010.03.066 CrossRefPubMedGoogle Scholar
  29. 29.
    Showell C, Binder O, Conlon FL (2004) T‑box genes in early embryogenesis. Dev Dyn 229:201–218.  https://doi.org/10.1002/dvdy.10480 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Singhal N, Kotasek D, Parnis FX (2009) Response to erlotinib in a patient with treatment refractory chordoma. Anticancer Drugs 20:953–955CrossRefPubMedGoogle Scholar
  31. 31.
    Stacchiotti S, Tamborini E, Lo VS et al (2013) Phase II study on lapatinib in advanced EGFR-positive chordoma. Ann Oncol 24:1931–1936CrossRefPubMedGoogle Scholar
  32. 32.
    Stacchiotti S, Gronchi A, Fossati P et al (2017) Best practices for the management of local-regional recurrent chordoma: a position paper by the Chordoma Global Consensus Group. Ann Oncol 28:1230–1242.  https://doi.org/10.1093/annonc/mdx054 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Virchow R (1857) Untersuchungen ueber die Entwicklung des Schaedelgrundes im gesunden und krankhaften Zustande und über den Einfluss derselben auf Schädelform, Gesichtsbildung und Gehirnbau. G Rimer, BerlinGoogle Scholar
  34. 34.
    Vujovic S, Henderson S, Presneau N et al (2006) Brachyury, a crucial regulator of notochordal development, is a novel biomarker for chordomas. J Pathol 209:157–165CrossRefPubMedGoogle Scholar
  35. 35.
    von Witzleben A, Goerttler LT, Lennerz J et al (2015) In chordoma, metastasis, recurrences, Ki-67 index, and a matrix-poor phenotype are associated with patients’ shorter overall survival. Eur Spine J.  https://doi.org/10.1007/s00586-015-4242-1 Google Scholar
  36. 36.
    von Witzlebena A, Goerttler LT, Marienfeld R et al (2015) Preclinical characterization of novel chordoma cell systems and their targeting by pharmocological inhibitors of the CDK4/6 cell cycle pathway. Cancer Res.  https://doi.org/10.1158/0008-5472.CAN-14-3270 Google Scholar
  37. 37.
    Yamaguchi T, Yamato M, Saotome K (2002) First histologically confirmed case of a classic chordoma arising in a precursor benign notochordal lesion: differential diagnosis of benign and malignant notochordal lesions. Skeletal Radiol 31:413–418.  https://doi.org/10.1007/s00256-002-0514-z CrossRefPubMedGoogle Scholar
  38. 38.
    Yamaguchi T, Suzuki S, Ishiiwa H, Ueda Y (2004) Intraosseous benign notochordal cell tumours: overlooked precursors of classic chordomas? Histopathology 44:597–602.  https://doi.org/10.1111/j.1365-2559.2004.01877.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2017

Authors and Affiliations

  • T. F. E. Barth
    • 1
  • A. von Witzleben
    • 1
  • P. Möller
    • 1
  • S. Scheil-Bertram
    • 1
    • 2
  1. 1.Institut für PathologieUniversität UlmUlmDeutschland
  2. 2.Institut für Pathologie und ZytologieHELIOS Dr. Horst Schmidt Kliniken WiesbadenWiesbadenDeutschland

Personalised recommendations