Morphologische Veränderungen des Knochengewebes bei Osteopetrose

  • J. Zustin
  • M. Amling
  • R. Crazzolara
  • S. Butscheidt
  • A. Schulz
  • R. Oheim
Schwerpunkt: Knorpel, Knochen, Chorda – Molekulare Onkologie

Zusammenfassung

Die Osteopetrose repräsentiert eine Gruppe von Skeletterkrankungen, die durch eine erhöhte Knochendichte charakterisiert werden. Sie wird durch eine angeborene Störung in der Differenzierung oder in der Funktion von Osteoklasten verursacht. Es handelt sich um eine genetisch und morphologisch sehr heterogene Erkrankung. Das mikroskopische Bild zeigt stets ein sklerotisches Knochengewebe mit entweder fehlenden oder aber stark vermehrten sowie vergrößerten, insuffizienten Osteoklasten. Des Weiteren kann es sowohl zu Mineralisierungsdefekten als auch zu einer normwertigen Mineralisierung der Knochenmatrix kommen. Wir präsentieren typische Beispiele von humaner Osteopetrose mit bekannten genetischen Veränderungen (Mutationen der TNFRSF11A-, TCIRG1-, CNCL7- und KINDLIN-3-Gene) und diskutieren Genotyp-Phänotyp-Korrelationen. Durch histopathologische Analysen von Knochenbiopsien seltener Skeletterkrankungen wie der Osteopetrose können neue Erkenntnisse über den Knochenmetabolismus gewonnen und so das klinische Prozedere von anderen Knochenerkrankungen verbessert werden.

Schlüsselwörter

Knochendichte Knochenerkrankungen Osteoklasten Osteopetrose Osteosklerose 

Morphological characteristics of osteopetrosis

Abstract

Osteopetrosis is a rare inherited bone disorder characterized by increased bone density owing to failure in bone resorption by the osteoclasts. The disease is genetically and histologically heterogeneous with a wide spectrum of microscopic findings. The histology varies from cases with a total absence of osteoclasts to bone biopsies characterized by high numbers of enlarged multinucleated osteoclasts on a background of sclerotic cancellous bone with or without additional defect of mineralization of the bone matrix. Here we present typical cases of human osteopetrosis on the basis of bone biopsies with four distinct genotypes (mutations of TNFRSF11A, TCIRG1, CNCL7, KINDLIN-3 genes) and discuss genotype-phenotype relationships. Analyzing human bone biopsies of rare skeletal disorders might improve our understanding of bone metabolism with possible implications for the clinical management of other bone diseases.

Keywords

Bone density Bone diseases Osteoclasts Osteopetrosis Osteosclerosis 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

J. Zustin, M. Amling, R. Crazzolara, S. Butscheidt, A. Schulz und R. Oheim geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L (1997) A homologue of the TNF receptor and its ligand enhance T‑cell growth and dendritic-cell function. Nature 390:175–179CrossRefPubMedGoogle Scholar
  2. 2.
    Barvencik F, Kurth I, Koehne T, Stauber T, Zustin J, Tsiakas K, Ludwig CF, Beil FT, Pestka JM, Hahn M, Santer R, Supanchart C, Kornak U, Del Fattore A, Jentsch TJ, Teti A, Schulz A, Schinke T, Amling M (2014) Clcn7 and Tcirg1 mutations differentially affect bone matrix mineralization in osteopetrotic individuals. J Bone Miner Res 29:982–991CrossRefPubMedGoogle Scholar
  3. 3.
    Coudert AE, de Vernejoul MC, Muraca M, Del Fattore A (2015) Osteopetrosis and its relevance for the discovery of new functions associated with the skeleton. Int J Endocrinol 2015:372156.  https://doi.org/10.1155/2015/372156 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME, Maliszewski CR, Armstrong A, Shen V, Bain S, Cosman D, Anderson D, Morrissey PJ, Peschon JJ, Schuh J (1999) Rank is essential for osteoclast and lymph node development. Genes Dev 13:2412–2424CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fata JE, Kong YY, Li J, Sasaki T, Irie-Sasaki J, Moorehead RA, Elliott R, Scully S, Voura EB, Lacey DL, Boyle WJ, Khokha R, Penninger JM (2000) The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 103:41–50CrossRefPubMedGoogle Scholar
  6. 6.
    Fuller K, Wong B, Fox S, Choi Y, Chambers TJ (1998) Trance is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. J Exp Med 188:997–1001CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hanada R, Hanada T, Sigl V, Schramek D, Penninger JM (2011) Rankl/Rank-beyond bones. J Mol Med 89:647–656CrossRefPubMedGoogle Scholar
  8. 8.
    Hanada R, Leibbrandt A, Hanada T, Kitaoka S, Furuyashiki T, Fujihara H, Trichereau J, Paolino M, Qadri F, Plehm R, Klaere S, Komnenovic V, Mimata H, Yoshimatsu H, Takahashi N, von Haeseler A, Bader M, Kilic SS, Ueta Y, Pifl S, Narumiya S, Penninger JM (2009) Central control of fever and female body temperature by Rankl/Rank. Nature 462:505–509CrossRefPubMedGoogle Scholar
  9. 9.
    Jones DH, Nakashima T, Sanchez OH, Kozieradzki I, Komarova SV, Sarosi I, Morony S, Rubin E, Sarao R, Hojilla CV, Komnenovic V, Kong YY, Schreiber M, Dixon SJ, Sims SM, Khokha R, Wada T, Penninger JM (2006) Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440:692–696CrossRefPubMedGoogle Scholar
  10. 10.
    Kilic SS, Etzioni A (2009) The clinical spectrum of leukocyte adhesion deficiency (LAD) III due to defective Caldag-Gef1. J Clin Immunol 29:117–122CrossRefPubMedGoogle Scholar
  11. 11.
    Kim N, Odgren PR, Kim DK, Marks SC Jr., Choi Y (2000) Diverse roles of the tumor necrosis factor family member trance in skeletal physiology revealed by trance deficiency and partial rescue by a lymphocyte-expressed trance transgene. Proc Natl Acad Sci USA 97:10905–10910CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) Opgl is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323CrossRefPubMedGoogle Scholar
  13. 13.
    Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A, Friedrich W, Delling G, Jentsch TJ (2001) Loss of the CLC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104:205–215CrossRefPubMedGoogle Scholar
  14. 14.
    Krause M, Keller J, Beil B, van Driel I, Zustin J, Barvencik F, Schinke T, Amling M (2015) Calcium gluconate supplementation is effective to balance calcium homeostasis in patients with gastrectomy. Osteoporos Int 26:987–995CrossRefPubMedGoogle Scholar
  15. 15.
    Lacey DL, Tan HL, Lu J, Kaufman S, Van G, Qiu W, Rattan A, Scully S, Fletcher F, Juan T, Kelley M, Burgess TL, Boyle WJ, Polverino AJ (2000) Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. Am J Pathol 157:435–448CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176CrossRefPubMedGoogle Scholar
  17. 17.
    Lange PF, Wartosch L, Jentsch TJ, Fuhrmann JC (2006) Clc-7 Requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function. Nature 440:220–223CrossRefPubMedGoogle Scholar
  18. 18.
    Leibbrandt A, Penninger JM (2009) RANK(L) as a key target for controlling bone loss. Adv Exp Med Biol 647:130–145CrossRefPubMedGoogle Scholar
  19. 19.
    Li J, Sarosi I, Yan XQ, Morony S, Capparelli C, Tan HL, McCabe S, Elliott R, Scully S, Van G, Kaufman S, Juan SC, Sun Y, Tarpley J, Martin L, Christensen K, McCabe J, Kostenuik P, Hsu H, Fletcher F, Dunstan CR, Lacey DL, Boyle WJ (2000) Rank is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci USA 97:1566–1571CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    McDowall A, Svensson S, Stanley P, Patzak I, Chakravarty P, Howarth K, Sabnis H, Briones H, Hogg N (2010) Two mutations in the Kindlin3 gene of a new leukocyte adhesion deficiency III patient reveal distinct effects on leukocyte function in vitro. Blood 115:4834–4842CrossRefPubMedGoogle Scholar
  21. 21.
    Moser M, Bauer M, Schmid S, Ruppert R, Schmidt S, Sixt S, Wang HV, Sperandio M, Fassler R (2009) Kindlin-3 is required for beta2 integrin-mediated leukocyte adhesion to endothelial cells. Nat Med 15:300–305CrossRefPubMedGoogle Scholar
  22. 22.
    Moser M, Nieswandt B, Ussar S, Pozgajova M, Fassler R (2008) Kindlin-3 Is essential for integrin activation and platelet aggregation. Nat Med 14:325–330CrossRefPubMedGoogle Scholar
  23. 23.
    Rossi SW, Kim MY, Leibbrandt A, Parnell SM, Jenkinson WE, Glanville SH, McConnell FM, Scott HS, Penninger JM, Jenkinson EJ, Lane PJ, Anderson G (2007) Rank signals from Cd4(+)3(−) inducer cells regulate development of aire-expressing epithelial cells in the thymic medulla. J Exp Med 204:1267–1272CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sabnis H, Kirpalani H, Horan J, McDowall A, Svensson L, Cooley A, Merck T, Jobe S, Hogg N, Briones M (2010) Leukocyte adhesion deficiency-III in an african-american patient. Pediatr Blood Cancer 55:180–182PubMedGoogle Scholar
  25. 25.
    Schinke T, Schilling AF, Baranowsky A, Seitz S, Marshall RP, Linn T, Blaeker M, Huebner AK, Schulz A, Simon R, Gebauer M, Priemel M, Kornak U, Perkovic S, Barvencik F, Beil FT, Del Fattore A, Frattini A, Streichert T, Pueschel K, Villa A, Debatin KM, Rueger JM, Teti A, Zustin J, Sauter G, Amling M (2009) Impaired gastric acidification negatively affects calcium homeostasis and bone mass. Nat Med 15:674–681CrossRefPubMedGoogle Scholar
  26. 26.
    Svensson L, Howarth K, McDowall A, Patzak I, Evans R, Ussar S, Moser M, Metin A, Fried M, Tomlinson I, Hogg N (2009) Leukocyte adhesion deficiency-III is caused by mutations in Kindlin3 affecting integrin activation. Nat Med 15:306–312CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Takayanagi H (2007) Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 7:292–304CrossRefPubMedGoogle Scholar
  28. 28.
    Weinert S, Jabs S, Supanchart C, Schweizer M, Gimber N, Richter M, Rademann J, Stauber T, Kornak U, Jentsch TJ (2010) Lysosomal pathology and osteopetrosis upon loss of H+-driven lysosomal Cl-accumulation. Science 328:1401–1403CrossRefPubMedGoogle Scholar
  29. 29.
    Wong BR, Rho J, Arron J, Robinson E, Orlinick J, Chao M, Kalachikov S, Cayani E, Bartlett FS 3rd, Frankel WN, Lee SY, Choi Y (1997) Trance is a novel ligand of the tumor necrosis factor receptor family that activates C‑jun N‑terminal kinase in T cells. J Biol Chem 272:25190–25194CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  • J. Zustin
    • 1
  • M. Amling
    • 2
  • R. Crazzolara
    • 3
  • S. Butscheidt
    • 2
  • A. Schulz
    • 4
  • R. Oheim
    • 2
  1. 1.Gemeinschaftspraxis für PathologiePathologie-HamburgHamburgDeutschland
  2. 2.Institut für Osteologie und BiomechanikUniversitätsklinikum Hamburg-EppendorfHamburgDeutschland
  3. 3.Department für Kinder- und JugendhilfeMedizinische Universität InnsbruckInnsbruckÖsterreich
  4. 4.Universitätsklinik für Kinder- und JugendmedizinUniversitätsklinikum UlmUlmDeutschland

Personalised recommendations