Abstract
Chronic myeloproliferative neoplasms (MPN) comprise a spectrum of clonal neoplastic disorders characterized by overproduction of terminally differentiated cells of the myeloid lineage. A common genetic basis for the BCR-ABL-negative MPN disorders was elucidated in 2005 with the identification of the JAK2V617F mutation in the majority of MPN patients. The discovery of JAK2V617F had a dramatic impact on the diagnosis and treatment of MPN. Testing for JAK2 mutations is now included in the World Health Organization (WHO) criteria for the diagnosis of MPN, and in 2011 the oral JAK2 kinase inhibitor ruxolitinib became the first Food and Drug Administration (FDA)-approved drug for the treatment of myelofibrosis. The drug is now also approved in Europe and Canada.
Zusammenfassung
Zu den chronischen myeloproliferativen Neoplasien (MPN) gehört ein Spektrum klonaler neoplastischer Erkrankungen, die durch Überproduktion terminal differenzierter Zellen der myeloischen Reihe gekennzeichnet sind. Eine gemeinsame genetische Grundlage der BCR-ABL-negativen MPN wurde 2005 mit der Identifizierung der JAK2V617F-Mutation bei der Mehrzahl der MPN-Patienten nachgewiesen. Die Entdeckung von JAK2V617F hatte drastische Auswirkungen auf die Diagnose und Therapie von MPN. Die Untersuchung auf JAK2-Mutationen ist nun Bestandteil der Kriterien der Weltgesundheitsorganisation (WHO) für die Diagnose von MPN, und 2011 erhielt der JAK2-Kinase-Inhibitor Ruxolitinib als erstes Medikament die Zulassung der Food and Drug Administration (FDA) zur Behandlung der Myelofibrose. Das Medikament ist mittlerweile ebenfalls in Europa und Kanada zugelassen.
Similar content being viewed by others
References
Baxter EJ, Scott LM, Campbell PJ et al (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365(9464):1054–1061
James C, Ugo V, Le Couedic JP et al (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434(7037):1144–1148
Kralovics R, Passamonti F, Buser AS et al (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352(17):1779–1790
Levine RL, Wadleigh M, Cools J et al (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7(4):387–397
Dameshek W (1951) Some speculations on the myeloproliferative syndromes. Blood 6(4):372–375
Prchal JF, Axelrad AA (1974) Letter: Bone-marrow responses in polycythemia vera. N Engl J Med 290(24):1382
Scott LM, Tong W, Levine RL et al (2007) JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 356(5):459–468
Ma W, Kantarjian H, Zhang X et al (2009) Mutation profile of JAK2 transcripts in patients with chronic myeloproliferative neoplasias. J Mol Diagn 11(1):49–53
Bandaranayake RM, Ungureanu D, Shan Y, Shaw DE, Silvennoinen O, Hubbard SR (2012) Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F. Nat Struct Mol Biol 19(8):754–759
Toms AV, Deshpande A, McNally R et al (2013) Structure of a pseudokinase-domain switch that controls oncogenic activation of Jak kinases. Nat Struct Mol Biol 20(10):1221–1223
Ungureanu D, Wu J, Pekkala T et al (2011) The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling. Nat Struct Mol Biol 18(9):971–976
Walz C, Ahmed W, Lazarides K et al (2012) Essential role for Stat5a/b in myeloproliferative neoplasms induced by BCR-ABL1 and JAK2(V617F) in mice. Blood 119(15):3550–3560
Yan D, Hutchison RE, Mohi G (2012) Critical requirement for Stat5 in a mouse model of polycythemia vera. Blood 119(15):3539–3549
Kralovics R, Guan Y, Prchal JT (2002) Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera. Exp Hematol 30(3):229–236
Jamieson CH, Gotlib J, Durocher JA et al (2006) The JAK2 V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation. Proc Natl Acad Sci USA 103(16):6224–6229
Ishii T, Bruno E, Hoffman R, Xu M (2006) Involvement of various hematopoietic-cell lineages by the JAK2V617F mutation in polycythemia vera. Blood 108(9):3128–3134
Delhommeau F, Dupont S, Tonetti C et al (2007) Evidence that the JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood 109(1):71–77
Anand S, Stedham F, Beer P et al (2011) Effects of the JAK2 mutation on the hematopoietic stem and progenitor compartment in human myeloproliferative neoplasms. Blood 118(1):177–181
Stein BL, Williams DM, Rogers O, Isaacs MA, Spivak JL, Moliterno AR (2011) Disease burden at the progenitor level is a feature of primary myelofibrosis: a multivariable analysis of 164 JAK2 V617F-positive myeloproliferative neoplasm patients. Exp Hematol 39(1):95–101
Xu X, Zhang Q, Luo J et al (2007) JAK2(V617F): Prevalence in a large Chinese hospital population. Blood 109(1):339–342
Nielsen C, Birgens HS, Nordestgaard BG, Kjaer L, Bojesen SE (2011) The JAK2 V617F somatic mutation, mortality and cancer risk in the general population. Haematologica 96(3):450–453
Dupont S, Masse A, James C et al (2007) The JAK2 617V>F mutation triggers erythropoietin hypersensitivity and terminal erythroid amplification in primary cells from patients with polycythemia vera. Blood 110(3):1013–1021
Gale RE, Allen AJ, Nash MJ, Linch DC (2007) Long-term serial analysis of X‑chromosome inactivation patterns and JAK2 V617F mutant levels in patients with essential thrombocythemia show that minor mutant-positive clones can remain stable for many years. Blood 109(3):1241–1243
Godfrey AL, Chen E, Pagano F et al (2012) JAK2V617F homozygosity arises commonly and recurrently in PV and ET, but PV is characterized by expansion of a dominant homozygous subclone. Blood 120(13):2704–2707
Cervantes F, Tassies D, Salgado C, Rovira M, Pereira A, Rozman C (1991) Acute transformation in nonleukemic chronic myeloproliferative disorders: actuarial probability and main characteristics in a series of 218 patients. Acta Haematol 85(3):124–127
Campbell PJ, Baxter EJ, Beer PA et al (2006) Mutation of JAK2 in the myeloproliferative disorders: timing, clonality studies, cytogenetic associations, and role in leukemic transformation. Blood 108(10):3548–3555
Theocharides A, Boissinot M, Girodon F et al (2007) Leukemic blasts in transformed JAK2-V617F-positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation. Blood 110(1):375–379
Harrison C, Kiladjian JJ, Al-Ali HK et al (2012) JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med 366(9):787–798
Verstovsek S, Mesa RA, Gotlib J et al (2012) A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 366(9):799–807
Deininger M, Radich J, Burn TC, Huber R, Paranagama D, Verstovsek S (2015) The effect of long-term ruxolitinib treatment on JAK2p.V617F allele burden in patients with myelofibrosis. Blood 126(13):1551–1554
Cervantes F, Vannucchi AM, Kiladjian JJ et al (2013) Three-year efficacy, safety, and survival findings from COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for myelofibrosis. Blood 122(25):4047–4053
Pardanani A, Laborde RR, Lasho TL et al (2013) Safety and efficacy of CYT387, a JAK1 and JAK2 inhibitor, in myelofibrosis. Leukemia 27(6):1322–1327
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
A. Mullally states that she has no competing interest.
This article does not contain any studies with human participants or animals performed by any of the authors.
The supplement containing this article is not sponsored by industry.
Rights and permissions
About this article
Cite this article
Mullally, A. Underlying mechanisms of the JAK2V617F mutation in the pathogenesis of myeloproliferative neoplasms. Pathologe 37 (Suppl 2), 175–179 (2016). https://doi.org/10.1007/s00292-016-0240-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00292-016-0240-2