Skip to main content
Log in

Metabolomanalyse solider Tumoren

Metabolome analysis of solid tumors

  • Hauptreferate: Aktuelle Habilitationen
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Metabolomik, die neueste unter den Omik-Wissenschaften, die auch Genomik, Transkriptomik und Proteomik umfassen, ist zu einer zuverlässigen Hochdurchsatztechnologie gereift. Die Kombination von Gaschromatographie mit Flugzeitmassenspektrometrie (GC-TOFMS) stellt ein geeignetes Verfahren zur Analyse des zentralen Metabolismus in frisch gefrorenen Tumorgewebeproben dar. Bioinformatische Methoden, u. a. das von uns entwickelte PROFILE-Clustering, erlauben eine integrierte Analyse und schnelle Interpretation von Metabolomikdaten im Kontext enzymatischer Reaktionen und Stoffwechselwege. Die hier vorgestellte Metabolomanalysen dreier solider Tumortypen zusammen mit den Ergebnissen anderer Autoren bestätigen die Eignung von Metaboliten als Biomarker und eröffnen verschiedene Möglichkeiten für die Translation in die Klinik.

Abstract

Metabolomics, the newest of the omics sciences that also include genomics, transcriptomics and proteomics, has matured into a reliable high-throughput technology. Gas chromatography combined with time-of-flight mass spectrometry (GC-TOFMS) is a suitable method to analyze the central metabolism in fresh frozen tumor tissue samples. Bioinformatics methods, including the PROFILE clustering developed by us, permit integrated analysis and fast interpretation of metabolomics data in the context of enzymatic reactions and metabolic pathways. The metabolome analyses of three solid tumor types presented here, together with the results of other authors, show that metabolites are suitable as biomarkers and provide diverse options for translation into the clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Andronesi OC, Loebel F, Bogner W et al (2016) Treatment response assessment in idh-mutant glioma patients by noninvasive 3d functional spectroscopic mapping of 2‑hydroxyglutarate. Clin Cancer Res 22:1632–1641

    Article  CAS  PubMed  Google Scholar 

  2. Budczies J (2015) Metabolomanalyse solider Tumore: Beiträge zur Bioinformatik und translationalen Tumorforschung. Habilitationsschrift. http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000100842. Zugegriffen: 9. Aug 2016

  3. Budczies J, Denkert C (2016) Tissue-based metabolomics to analyze the breast cancer metabolome. In: Cramer T, Schmitt C (Hrsg) Metabolism in cancer. Springer, Heidelberg

    Google Scholar 

  4. Budczies J, Brockmöller SF, Müller BM et al (2013) Comparative metabolomics of estrogen receptor positive and estrogen receptor negative breast cancer: alterations in glutamine and beta-alanine metabolism. J Proteomics 94:279–288

    Article  CAS  PubMed  Google Scholar 

  5. Budczies J, Denkert C, Müller BM et al (2010) Metatarget – extracting key enzymes of metabolic regulation from high-throughput metabolomics data using KEGG reaction information. German Conference on Bioinformatics 2010., S 103–112

    Google Scholar 

  6. Budczies J, Denkert C, Müller BM et al (2012) Remodeling of central metabolism in invasive breast cancer compared to normal breast tissue – a GC-TOFMS based metabolomics study. BMC Genomics 13:334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Budczies J, Kosztyla D, von Törne C et al (2014) Cancerclass: an R package for development and validation of diagnostic tests from high-dimensional molecular data. J Stat Softw 59:1–19

    Google Scholar 

  8. Budczies J, Pfitzner BM, Györffy B et al (2015) Glutamate enrichment as new diagnostic opportunity in breast cancer. Int J Cancer 136:1619–1628

    Article  CAS  PubMed  Google Scholar 

  9. Chaturvedi A, Araujo Cruz MM, Jyotsana N et al (2016) Enantiomer-specific and paracrine leukemogenicity of mutant idh metabolite 2‑hydroxyglutarate. Leukemia. doi:10.1038/leu.2016.71

    Google Scholar 

  10. Denkert C, Budczies J, Kind T et al (2006) Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors. Cancer Res 66:10795–10804

    Article  CAS  PubMed  Google Scholar 

  11. Denkert C, Budczies J, Weichert W et al (2008) Metabolite profiling of human colon carcinoma – deregulation of TCA cycle and amino acid turnover. Mol Cancer 7:72

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fathi AT, Sadrzadeh H, Comander AH et al (2014) Isocitrate dehydrogenase 1 (IDH1) mutation in breast adenocarcinoma is associated with elevated levels of serum and urine 2‑hydroxyglutarate. Oncologist 19:602–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gross MI, Demo SD, Dennison JB et al (2014) Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol Cancer Ther 13:890–901

    Article  CAS  PubMed  Google Scholar 

  14. Kelly AD, Breitkopf SB, Yuan M et al (2011) Metabolomic profiling from formalin-fixed, paraffin-embedded tumor tissue using targeted LC-MS/MS: application in sarcoma. PLOS ONE 6:e25357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–482

    Article  CAS  PubMed  Google Scholar 

  16. Mihály Z, Kormos M, Lánczky A et al (2013) A meta-analysis of gene expression-based biomarkers predicting outcome after tamoxifen treatment in breast cancer. Breast Cancer Res Treat 140:219–232

    Article  PubMed  Google Scholar 

  17. Morin A, Letouzé E, Gimenez-Roqueplo A et al (2014) Oncometabolites-driven tumorigenesis: from genetics to targeted therapy. Int J Cancer 135:2237–2248

    Article  CAS  PubMed  Google Scholar 

  18. Robinson MM, McBryant SJ, Tsukamoto T et al (2007) Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). Biochem J 406:407–414

  19. Schulze A, Harris AL (2012) How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 491:364–373

    Article  CAS  PubMed  Google Scholar 

  20. Shulaev V (2006) Metabolomics technology and bioinformatics. Brief Bioinform 7:128–139

    Article  CAS  PubMed  Google Scholar 

  21. Sreekumar A, Poisson LM, Rajendiran TM et al (2009) Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457:910–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tang X, Lin C, Spasojevic I et al (2014) A joint analysis of metabolomics and genetics of breast cancer. Breast Cancer Res 16:415

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tennant DA, Durán RV, Gottlieb E (2010) Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 10:267–277

    Article  CAS  PubMed  Google Scholar 

  24. Tennant DA, Durán RV, Boulahbel H et al (2009) Metabolic transformation in cancer. Carcinogenesis 30:1269–1280

    Article  CAS  PubMed  Google Scholar 

  25. Terunuma A, Putluri N, Mishra P et al (2014) Myc-driven accumulation of 2‑hydroxyglutarate is associated with breast cancer prognosis. J Clin Invest 124:398–412

    Article  CAS  PubMed  Google Scholar 

  26. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang J, Erickson JW, Fuji R et al (2010) Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 18:207–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wishart DS, Jewison T, Guo AC et al (2013) HMDB 3.0 – the human metabolome database in 2013. Nucleic Acids Res 41:D801–D807

    Article  CAS  PubMed  Google Scholar 

  29. Wojakowska A, Marczak Ł, Jelonek K et al (2015) An optimized method of metabolite extraction from formalin-fixed paraffin-embedded tissue for GC-MS analysis. PLOS ONE 10:e0136902

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Budczies.

Ethics declarations

Interessenkonflikt

J. Budczies gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

The supplement containing this article is not sponsored by industry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budczies, J. Metabolomanalyse solider Tumoren. Pathologe 37 (Suppl 2), 204–209 (2016). https://doi.org/10.1007/s00292-016-0217-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-016-0217-1

Schlüsselwörter

Keywords

Navigation