Skip to main content
Log in

Tumorgenese aus pathologischer Sicht

Tumorausbreitung und epigenetisch regulierte Gene beim Harnblasenkarzinom

Tumorigenesis from a pathological perspective

Tumor spread and epigenetically regulated genes in bladder cancer

  • Hauptreferate: Aktuelle Habilitationen
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Die vorliegende Arbeit betrachtet die Tumorgenese des Harnblasenkarzinoms auf drei dem Pathologen zugänglichen Ebenen: morphologisch, molekular- und epigenetisch. „Feldkanzerisierung“ und intraurotheliale Migration/Tumorzellseeding sind die wissenschaftlichen Haupthypothesen, welche das syn- und metachrone Auftreten multipler Tumoren im gesamten Harntrakt erklären sollen. In ausführlichen Zystektomiekartierungsstudien fanden wir in fast zwei Drittel aller Präparate ein unifokales Tumorgeschehen umgeben von einem tumornahen präinvasiven Carcinoma in situ. Weitere Untersuchungen mithilfe der TP53-Mutations- und Loss-of-heterozygosity-Analyse an ausgewählten Fällen sprechen für eine klonale Verwandtschaft der Tumorläsionen. In-situ-lineage-tracing via Cytochrom-C-Oxidase/Succinatdehydrogenase-Enzymhistochemie mit nachgeschalteter mitochondrialer DNA-Mutationsanalyse zum definitiven Klonalitätsnachweis blieb bei Harnblasentumoren inkonklusiv. Insgesamt fanden sich Hinweise auf beide Ausbreitungstheorien, wobei jedoch die intraurotheliale Migration/Tumorzellseeding den mengenmäßig größeren Anteil darstellt.

Ein weiterer Tumorgenesemechanismus ist die Inaktivierung von Genen durch epigenetische DNA-Methylierung. Wir analysierten die DNA-Methylierung von verschiedenen Genen, welche in RNA-Expressionsanalysen des Harnblasenkarzinoms herabreguliert waren. Dabei war insbesondere epigenetisch inaktiviertes ITIH5 mit einem frühen Rezidiv in pT1 High grade-Tumoren vergesellschaftet und zeigte funktionell einen forcierten invasiv-metastatischen Phänotyp, was eine initial tumorsuppressive Rolle nahelegt. Die epigenetische Gen-Inaktivierung stellt damit einen weiteren Tumorgenesemechanismus v. a. in der Progression der Erkrankung dar.

Abstract

The article describes the tumorigenesis of bladder cancer from a pathological perspective in three dimensions: morphology, genetics and epigenetics. Field cancerization and tumor cell migration/seeding are the two main hypotheses used for explaining synchronous and metachronous tumors in the urinary tract. By detailed histological mapping of completely embedded cystectomy specimens we found a single tumor focus in nearly 2/3 of the bladders accompanied by surrounding preinvasive carcinoma in situ. We substantiated our findings by studies analyzing TP53 mutations and loss of heterozygosity in various tumor sites. Identical TP53 mutations suggested a clonal relationship of the tumor foci. In situ lineage tracing via cytochrome C oxidase and succinate dehydrogenase enzyme histochemistry and subsequent mitochondrial DNA mutation analysis for definitive evidence of a clonal relationship in bladder tumors remained inconclusive. We found indications for both theories but intraurothelial migration/seeding was more prominent.

A further mechanism in tumorigenesis is gene inactivation by epigenetic DNA methylation. We analyzed DNA methylation of various genes, which had previously been found by RNA expression analysis to be downregulated in bladder cancer. Most importantly, epigenetically silenced ITIH5 was associated with early relapse in pT1 high grade tumors and functionally showed an enhanced invasive metastatic phenotype in tumor cells, suggesting a putative tumor suppressive role. Thus, epigenetic gene silencing is an additional mechanism of tumorigenesis especially in tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Balbas-Martinez C, Sagrera A, Carrillo-de-Santa-Pau E, Earl J, Marquez M, Vazquez M, Lapi E, Castro-Giner F, Beltran S, Bayes M, Carrato A, Cigudosa JC, Dominguez O, Gut M, Herranz J, Juanpere N, Kogevinas M, Langa X, Lopez-Knowles E, Lorente JA, Lloreta J, Pisano DG, Richart L, Rico D, Salgado RN, Tardon A, Chanock S, Heath S, Valencia A, Losada A, Gut I, Malats N, Real FX (2013) Recurrent inactivation of STAG2 in bladder cancer is not associated with aneuploidy. Nat Genet 45:1464–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bost F, Diarra-Mehrpour M, Martin JP (1998) Inter-alpha-trypsin inhibitor proteoglycan family – a group of proteins binding and stabilizing the extracellular matrix. Eur J Biochem 252:339–346

    Article  CAS  PubMed  Google Scholar 

  3. Czerniak B, Dinney C, McConkey D (2016) Origins of bladder cancer. Annu Rev Pathol Mech Dis 11:149–174

    Article  CAS  Google Scholar 

  4. Davidson DD, Cheng L (2006) “Field cancerization” in the urothelium of the bladder. Anal Quant Cytol Histol 28:337–338

    PubMed  Google Scholar 

  5. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159

    Article  CAS  PubMed  Google Scholar 

  6. Gaisa NT, Graham TA, McDonald SAC, Canadillas-Lopez S, Poulsom R, Heidenreich A, Jakse G, Tadrous PJ, Knüchel R, Wright NA (2011) The human urothelium consists of multiple clonal units, each maintained by a stem cell. J Pathol 225:163–171

    Article  CAS  PubMed  Google Scholar 

  7. Gaisa NT, Tilki D, Losen I, Dahl E, Stoehr R, Stief CG, Knüchel R (2008) Insight from a whole cystectomy specimen – association of primary small cell carcinoma of the bladder with transitional cell carcinoma in situ. Hum Pathol 39:1258–1262

    Article  CAS  PubMed  Google Scholar 

  8. Gaisa NT, Wilms H, Wild PJ, Heidenreich A, Knuechel R (2015) In cystectomy specimens with bladder cancer whole organ embedding increases the detection rate of histopathological parameters, but not of those with prognostic significance. Virchows Arch 466:423–432

    Article  PubMed  Google Scholar 

  9. Himmelfarb M, Klopocki E, Grube S, Staub E, Klaman I, Hinzmann B, Kristiansen G, Rosenthal A, Dürst M, Dahl E (2004) ITIH5, a novel member of the inter-alpha-trypsin inhibitor heavy chain family is downregulated in breast cancer. Cancer Lett 204:69–77

    Article  CAS  PubMed  Google Scholar 

  10. Höglund M (2007) On the origin of syn- and metachronous urothelial carcinomas. Eur Urol 51:1185–1193

    Article  PubMed  Google Scholar 

  11. Kloten V, Rose M, Kaspar S, von Stillfried S, Knüchel R, Dahl E (2014) Epigenetic inactivation of the novel candidate tumor suppressor gene ITIH5 in colon cancer predicts unfavorable overall survival in the CpG island methylator phenotype. Epigenetics 9:1290–1301

    Article  PubMed  PubMed Central  Google Scholar 

  12. Robert Koch-Institut (Hrsg), Gesellschaft der epidemiologischen Krebsregister in Deutschland e. V. (Hrsg) (2015) Krebs in Deutschland 2011/2012, 10. Aufl., Berlin

  13. Leedham SJ, Wright NA (2008) Human tumour clonality assessment – flawed but necessary. J Pathol 215:351–354

    Article  CAS  PubMed  Google Scholar 

  14. Lopez-Beltran A, Alvarez-Kindelan J, Luque RJ, Blanca A, Quintero A, Montironi R, Cheng L, Gonzalez-Campora R, Requena MJ (2008) Loss of heterozygosity at 9q32-33 (DBC1 locus) in primary non-invasive papillary urothelial neoplasm of low malignant potential and low-grade urothelial carcinoma of the bladder and their associated normal urothelium. J Pathol 215:263–272

    Article  CAS  PubMed  Google Scholar 

  15. Lu Y, Liu P, Wen W, Grubbs CJ, Townsend RR, Malone JP, Lubet RA, You M (2010) Cross-species comparison of orthologous gene expression in human bladder cancer and carcinogen-induced rodent models. Am J Transl Res 3:8–27

    PubMed  PubMed Central  Google Scholar 

  16. Novelli M, Cossu A, Oukrif D, Quaglia A, Lakhani S, Poulsom R, Sasieni P, Carta P, Contini M, Pasca A, Palmieri G, Bodmer W, Tanda F, Wright N (2003) X‑inactivation patch size in human female tissue confounds the assessment of tumor clonality. P Natl Acad Sci USA 100:3311–3314

    Article  CAS  Google Scholar 

  17. Pita JM, Banito A, Cavaco BM, Leite V (2009) Gene expression profiling associated with the progression to poorly differentiated thyroid carcinomas. Br J Cancer 101:1782–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rose M, Gaisa NT, Antony P, Fiedler D, Heidenreich A, Otto W, Denzinger S, Bertz S, Hartmann A, Karl A, Knüchel R, Dahl E (2014) Epigenetic inactivation of ITIH5 promotes bladder cancer progression and predicts early relaps of pT1 high-grade urothelial tumours. Carcinogenesis 35:727–736

    Article  CAS  PubMed  Google Scholar 

  19. Sanchez-Carbayo M (2012) Hypermethylation in bladder cancer: Biological pathways and translational applications. Tumour Biol 33:347–361

    Article  CAS  PubMed  Google Scholar 

  20. Sandoval J, Esteller M (2012) Cancer epigenomics: Beyond genomics. Curr Opin Genet Dev 22:50–55

    Article  CAS  PubMed  Google Scholar 

  21. Selbi W, de la Motte CA, Hascall VC, Day AJ, Bowen T, Phillips AO (2006) Characterization of hyaluronan cable structure and function in renal proximal tubular epithelial cells. Kidney Int 70:1287–1295

    Article  CAS  PubMed  Google Scholar 

  22. Sidransky D, Fost P, von Eschenbach A, Oyasu R, Preisinger AC, Vogelstein B (1992) Clonal origin of bladder cancer. N Engl J Med 326:737–740

    Article  CAS  PubMed  Google Scholar 

  23. Slaughter DP, Southwick HW, Smejkal W (1953) Field cancerization in oral stratified squamous epithelium; Clinical implications of multicentric origin. Cancer 6:963–968

    Article  CAS  PubMed  Google Scholar 

  24. Takai D, Jones PA (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. P Natl Acad Sci USA 99:3740–3745

    Article  CAS  Google Scholar 

  25. Taylor RW, Barron MJ, Borthwick GM, Gospel A, Chinnery PF, Samuels DC, Taylor GA, Plusa SM, Needham SJ, Greaves LC, Kirkwood TB, Turnbull DM (2003) Mitochondrial DNA mutations in human colonic crypt stem cells. J Clin Invest 112:351–360

    Article  Google Scholar 

  26. Tsai YC, Simoneau AR, Spruck CH 3rd, Nichols PW, Steven K, Buckley JD, Jones PA (1995) Mosaicism in human epithelium: Macroscopic monoclonal patches cover the urothelium. J Urol 153:1697–1700

    CAS  PubMed  Google Scholar 

  27. Veeck J, Chorovicer M, Naami A, Breuer E, Zafrakas M, Bektas N, Dürst M, Kristiansen G, Wild PJ, Hartmann A, Knuechel R, Dahl E (2008) The extracellular matrix protein ITIH5 is a novel prognostic marker in invasive node-negative breast cancer and its aberrant expression is caused by promoter hypermethylation. Oncogene 27:865–876

    Article  CAS  PubMed  Google Scholar 

  28. Wild PJ, Herr A, Wissmann C, Stoehr R, Rosenthal A, Zaak D, Simon R, Knuechel R, Pilarsky C, Hartmann A (2005) Gene expression profiling of progressive papillary noninvasive carcinomas of the urinary bladder. Clin Cancer Res 11:4415–4429

    Article  CAS  PubMed  Google Scholar 

  29. Zhuo L, Hascall VC, Kimata K (2004) Inter-α-trypsin inhibitor, a covalent protein-glycosaminoglycan-protein complex. J Biol Chem 279:38079–38082

    Article  CAS  PubMed  Google Scholar 

  30. Zhuo L, Kimata K (2008) Structure and function of inter-alpha-trypsin inhibitor heavy chains. Connect Tissue Res 49:311–320

    Article  CAS  PubMed  Google Scholar 

Download references

Danksagung

Besonderer Dank gilt Dr. rer. nat. Michael Rose, der die zahlreichen Experimente zur DNA-Methylierung im Rahmen seiner Promotion durchgeführt hat. Weiterhin bedanke ich mich bei Frau Prof. Knüchel-Clarke für die Förderung und Möglichkeit zur Habilitation sowie bei Prof. Dr. rer. nat. Dahl (AG Molekulare Onkologie, Institut für Pathologie RWTH Aachen) für die Unterstützung. Zudem danke ich allen Mitarbeiter(-innen) und Kooperationspartnern, die an den zahlreichen Experimenten beteiligt waren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. T. Gaisa.

Ethics declarations

Interessenkonflikt

N.T. Gaisa gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren. Es wurde anonymisiert retrospektiv menschliches Gewebe untersucht, welches im Rahmen von Routinehistologischen Untersuchungen oder im Rahmen des Biobankings archiviert wurde. Positive Stellungnahmen der Ethikkommission zu den einzelnen Projekten liegen vor (RWTH EK 122/04, 173/06, 206/09, 76/10).

The supplement containing this article is not sponsored by industry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaisa, N.T. Tumorgenese aus pathologischer Sicht. Pathologe 37 (Suppl 2), 196–203 (2016). https://doi.org/10.1007/s00292-016-0207-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-016-0207-3

Schlüsselwörter

Keywords

Navigation