Skip to main content

Liquid-biopsy-Analysen mithilfe zellfreier DNA (cfDNA)

Möglichkeiten und Grenzen

Liquid biopsy analysis using cell-free DNA (cfDNA)

Opportunities and limitations

Zusammenfassung

Molekularbiologische Analysen von Nukleinsäuren im Blut oder anderen Körperflüssigkeiten (sog. Liquid-biopsy-Analysen) könnten in den nächsten Jahren die Diagnostik des Pathologen sinnvoll ergänzen – v. a. in der personalisierten Krebsmedizin. Bei den onkologischen Erkrankungen wird das Potenzial der „liquid biopsy“ insbesondere darin gesehen, die Tumorlast nichtinvasiv zu bestimmen und entstehende Resistenzen gegen spezifische Therapien bei Patienten mit metastasierten Tumoren frühzeitig zu erkennen. Aber auch der primäre Nachweis onkologischer Treibermutationen mithilfe der Blutanalyse wird zunehmend diskutiert und ist zum Nachweis von Epidermal-Growth-Factor-Receptor(EGFR)-Mutationen beim Lungenkarzinom bei fehlender Biopsie bereits zugelassen. Insgesamt betrachtet erscheint die blutbasierte DNA-Analytik aufgrund vieler offener Fragen und beträchtlicher Unsicherheiten aber noch nicht einsatzbereit für einen routinemäßigen Einsatz in der Krebsdiagnostik. Der vorliegende Artikel möchte den Stand der Entwicklung aus Sicht eines molekularpathologischen Labors darlegen.

Abstract

Molecular biological analysis of nucleic acids in blood or other bodily fluids (i.e. liquid biopsy analyses) may supplement the pathologists’ diagnostic armamentarium in a reasonable way—particularly in cancer precision medicine. Within the field of oncology, liquid biopsy can potentially be used to monitor tumor burden in the blood and to early detect emerging resistance in the course of targeted cancer therapies. An already approved application of liquid biopsy is the detection of epidermal growth factor receptor (EGFR) driver mutations in blood samples of lung cancer patients in those cases where no tissue biopsy is available. However, there is still currently considerable insecurity associated with blood-based DNA analytic methods that must be solved before liquid biopsy can be implemented for broader routine application in the diagnosis of cancer. In this article, the current state of development of liquid biopsy in molecular diagnostics from a pathology point of view is presented.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2

Literatur

  1. Agassi R, Czeiger D, Shaked G et al (2015) Measurement of circulating cell-free DNA levels by a simple fluorescent test in patients with breast cancer. Am J Clin Pathol 143:18–24

    CAS  Article  PubMed  Google Scholar 

  2. Alix-Panabieres C, Pantel K (2013) Circulating tumor cells: liquid biopsy of cancer. Clin Chem 59:110–118

    CAS  Article  PubMed  Google Scholar 

  3. Alix-Panabieres C, Pantel K (2014) Challenges in circulating tumour cell research. Nat Rev Cancer 14:623–631

    CAS  Article  PubMed  Google Scholar 

  4. Ascierto PA, Minor D, Ribas A et al (2013) Phase II trial (BREAK-2) of the BRAF inhibitor dabrafenib (GSK2118436) in patients with metastatic melanoma. J Clin Oncol 31:3205–3211

  5. Bastian PJ, Palapattu GS, Yegnasubramanian S et al (2007) Prognostic value of preoperative serum cell-free circulating DNA in men with prostate cancer undergoing radical prostatectomy. Clin Cancer Res 13:5361–5367

    CAS  Article  PubMed  Google Scholar 

  6. Bettegowda C, Sausen M, Leary RJ et al (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6:224ra24

    PubMed Central  Article  PubMed  Google Scholar 

  7. Church TR, Wandell M, Lofton-Day C et al (2014) Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut 63:317–325

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Conor E, Steuer MD, Fadlo R et al (2014) The next generation of epidermal growth factor receptor tyrosine kinase inhibitors in the treatment of lung cancer. Cancer 121:E1–E6

    Google Scholar 

  9. Couraud S, Labonne S, Missy P et al (2013) Lung cancer in never smokers: a French national cohort (BioCAST/IFCT-1002). Rev Mal Respir 30:576–583

    CAS  Article  PubMed  Google Scholar 

  10. Couraud S, Souquet PJ, Paris C et al (2015) BioCAST/IFCT-1002: epidemiological and molecular features of lung cancer in never-smokers. Eur Respir J 45:1403–1414

    CAS  Article  PubMed  Google Scholar 

  11. Dawson SJ, Rosenfeld N, Caldas C (2013) Circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 369:93–94

    CAS  Article  PubMed  Google Scholar 

  12. Diaz LA Jr, Bardelli A (2014) Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 32:579–586

    Article  PubMed  Google Scholar 

  13. Fackler MJ, Lopez BZ, Umbricht C et al (2014) Novel methylated biomarkers and a robust assay to detect circulating tumor DNA in metastatic breast cancer. Cancer Res 74:2160–2170

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  14. Forshew T, Murtaza M, Parkinson C et al (2012) Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med 4:136ra68

    Article  PubMed  Google Scholar 

  15. Grutzmann R, Molnar B, Pilarsky C et al (2008) Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PLoS One 3:e3759

    PubMed Central  Article  PubMed  Google Scholar 

  16. Herman JG (2004) Circulating methylated DNA. Ann N Y Acad Sci 1022:33–39

    CAS  Article  PubMed  Google Scholar 

  17. Hindson BJ, Ness KD, Masquelier DA et al (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83:8604–8610

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  18. http://www.wsj.com/articles/eric-topol-and-stephen-r-quake-a-stethoscope-for-the-next-200-years-1420242913

  19. Hua Z, Rouse JL, Eckhardt AE et al (2010) Multiplexed real-time polymerase chain reaction on a digital microfluidic platform. Anal Chem 82:2310–2316

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  20. Jahr S, Hentze H, Englisch S et al (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 61:1659–1665

    CAS  PubMed  Google Scholar 

  21. Kloten V, Birte B, Winner K et al (2013) Promoter hypermethylation of the tumorsuppressor genes ITIH5, DKK3, and RASSF1A as novel biomarkers for blood-based breast cancer screening. Breast Cancer Res 15:R4

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  22. Leon SA, Shapiro B, Sklaroff DM et al (1977) Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 37:646–650

    CAS  PubMed  Google Scholar 

  23. Li M, Chen WD, Papadopoulos N et al (2009) Sensitive digital quantification of DNA methylation in clinical samples. Nat Biotechnol 27:858–863

    PubMed Central  Article  PubMed  Google Scholar 

  24. Lofton-Day C, Model F, deVos T et al (2008) DNA methylation biomarkers for blood-based colorectal cancer screening. Clin Chem 54:414–423

    CAS  Article  PubMed  Google Scholar 

  25. Mandel P, Metais P (1948) Les acides nucléiques du plasma san-guin chez l’Homme. C R Seances Soc Biol Fil 142:241–243

    CAS  PubMed  Google Scholar 

  26. Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11:31–46

    CAS  Article  PubMed  Google Scholar 

  27. Misale S, Yaeger R, Hobor S et al (2012) Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486:532–536

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Mok TS, Wu YL, Soo LJ et al (2015) Detection and Dynamic Changes of EGFR Mutations from circulating tumor DNA as a predictor of survival outcomes in NSCLC patients treated with first-line intercalated erlotinib and chemotherapy. Clin Cancer Res 21(14):3196–3203

    CAS  Article  PubMed  Google Scholar 

  29. Murtaza M, Dawson SJ, Tsui DW et al (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497:108–112

    CAS  Article  PubMed  Google Scholar 

  30. Norton SE, Lechner JM, Williams T et al (2013) A stabilizing reagent prevents cell-free DNA contamination by cellular DNA in plasma during blood sample storage and shipping as determined by digital PCR. Clinical Biochemistry 46:1561–1565

    CAS  Article  PubMed  Google Scholar 

  31. Oxnard GR, Paweletz CP, Kuang Y et al (2014) Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin Cancer Res 20:1698–1705

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  32. Pantel K, Alix-Panabieres C (2012) The potential of circulating tumor cells as a liquid biopsy to guide therapy in prostate cancer. Cancer Discov 2:974–975

    CAS  Article  PubMed  Google Scholar 

  33. Stroun M, Maurice P, Vasioukhin V et al (2000) The origin and mechanism of circulating DNA. Ann N Y Acad Sci 906:161–168

    CAS  Article  PubMed  Google Scholar 

  34. Thierry AR, Mouliere F, El Messaoudi S et al (2014) Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat Med 20:430–435

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Dahl or V. Kloten.

Ethics declarations

Interessenkonflikt

V. Kloten und E. Dahl geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Additional information

Schwerpunktherausgeberin

R. Knüchel-Clarke, Aachen

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dahl, E., Kloten, V. Liquid-biopsy-Analysen mithilfe zellfreier DNA (cfDNA). Pathologe 36, 572–578 (2015). https://doi.org/10.1007/s00292-015-0078-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-015-0078-z

Schlüsselwörter

  • Personalisierte Medizin
  • Zielgerichtete Therapien
  • Treibermutationen
  • EGFR-Mutationen
  • Response-Monitoring

Keywords

  • Precision medicine
  • Targeted therapy
  • Driver mutations
  • EGFR mutations
  • Response monitoring