Skip to main content
Log in

Tumorassoziierte Makrophagen

Funktion und Differenzierung

Tumor-associated macrophages

Function and differentiation

  • Schwerpunkt: Histiozytäre Erkrankungen
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Makrophagen sind pathogenetisch und prognostisch wichtige Faktoren bei der Progression maligner Tumoren und stellen ein mögliches Ziel für eine therapeutische Intervention dar. Abhängig von Tumorentität und prävalenter Polarisierung können Makrophagen mit günstigem oder ungünstigem klinischem Verlauf assoziiert sein. Die gängige Einteilung in M1-polarisierte, tumorhemmende und M2-polarisierte, tumorfördernde Makrophagen wird der Heterogenität und Plastizität von Makrophagen aber nicht gerecht. Makrophagen können die Tumorprogression durch direkte Interaktionen mit den Tumorzellen, durch Förderung von Bindegewebsumbau und Angiogenese oder durch Hemmung der lokalen Immunreaktion unterstützen. Um eine bessere Vergleichbarkeit klinischer Studien zu erreichen, ist ein Konsens über die Terminologie der Makrophagenpolarisierung erforderlich. Ferner müssen Methoden für die quantitative Charakterisierung von Makrophagenpopulationen bei Tumoren standardisiert werden. Immunhistochemische Färbungen unter Verwendung einzelner Marker sind hierfür nicht ausreichend. In jedem Fall sollten die verwendeten Marker oder Markerkombinationen eindeutig angegeben werden.

Abstract

Macrophages are important factors in the pathogenesis and prognosis of malignant tumors and represent a possible target for therapeutic intervention. Depending on the tumor entity and the prevalent polarization status, macrophages can be associated with a favorable or unfavorable clinical outcome. It is becoming clear, however, that the conventional definitions of M1 polarized tumor inhibitory and M2 polarized tumor promoting macrophages do not adequately reflect the heterogeneity and plasticity of macrophages. Macrophages can support tumor growth through direct interactions with the neoplastic cells, by promoting tissue remodeling and angiogenesis and by inhibiting local immune reactions. To achieve comparability of clinical studies, it will be necessary to reach a consensus nomenclature of macrophage polarization. Furthermore, methods for the quantitative characterization of macrophage populations in malignant tumors will have to be standardized. It is unlikely that single marker immunohistochemistry will be adequate in this context. In any case it is necessary to provide unequivocal information regarding the markers or marker combinations used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Audrito V, Serra S, Brusa D et al (2015) Extracellular nicotinamide phosphoribosyltransferase (NAMPT) promotes M2 macrophage polarization in chronic lymphocytic leukemia. Blood 125:111–123

    Article  CAS  PubMed  Google Scholar 

  2. Baeriswyl V, Christofori G (2009) The angiogenic switch in carcinogenesis. Semin Cancer Biol 19:329–337

    Article  CAS  PubMed  Google Scholar 

  3. Barros MH, Hauck F, Dreyer JH et al (2013) Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages. PLoS One 8:e80908

    Article  PubMed Central  PubMed  Google Scholar 

  4. Barros MH, Segges P, Vera-Lozada G et al (2015) Macrophage polarization reflects T cell composition of tumor microenvironment in pediatric classical hodgkin lymphoma and has impact on survival. PLoS One 10:e0124531

    Article  PubMed Central  PubMed  Google Scholar 

  5. Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196:254–265

    Article  CAS  PubMed  Google Scholar 

  6. Buddingh EP, Kuijjer ML, Duim RA et al (2011) Tumor-infiltrating macrophages are associated with metastasis suppression in high-grade osteosarcoma: a rationale for treatment with macrophage activating agents. Clin Cancer Res 17:2110–2119

    Article  CAS  PubMed  Google Scholar 

  7. Buechler C, Ritter M, Orso E et al (2000) Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli. J Leukoc Biol 67:97–103

    CAS  PubMed  Google Scholar 

  8. Burger JA, Quiroga MP, Hartmann E et al (2009) High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation. Blood 113:3050–3058

    Article  CAS  PubMed  Google Scholar 

  9. Byers RJ, Sakhinia E, Joseph P et al (2008) Clinical quantitation of immune signature in follicular lymphoma by RT-PCR-based gene expression profiling. Blood 111:4764–4770

    Article  CAS  PubMed  Google Scholar 

  10. Cao S, Liu J, Song L et al (2005) The protooncogene c-Maf is an essential transcription factor for IL-10 gene expression in macrophages. J Immunol 174:3484–3492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Classen A, Lloberas J, Celada A (2009) Macrophage activation: classical versus alternative. Methods Mol Biol 531:29–43

    Article  CAS  PubMed  Google Scholar 

  12. Coussens LM, Zitvogel L, Palucka AK (2013) Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 339:286–291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Curiel TJ, Coukos G, Zou L et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    Article  CAS  PubMed  Google Scholar 

  14. Diehl V (2010) Hematology. Are macrophages the bad guys in Hodgkin lymphoma? Nat Rev Clin Oncol 7:301–302

    Article  CAS  PubMed  Google Scholar 

  15. Edin S, Wikberg ML, Oldenborg PA et al (2013) Macrophages: good guys in colorectal cancer. Oncoimmunology 2:e23038

    Article  PubMed Central  PubMed  Google Scholar 

  16. Epelman S, Lavine KJ, Randolph GJ (2014) Origin and functions of tissue macrophages. Immunity 41:21–35

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Falini B, Flenghi L, Pileri S et al (1993) PG-M1: a new monoclonal antibody directed against a fixative-resistant epitope on the macrophage-restricted form of the CD68 molecule. Am J Pathol 142:1359–1372

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Fuentes-Duculan J, Suarez-Farinas M, Zaba LC et al (2010) A subpopulation of CD163-positive macrophages is classically activated in psoriasis. J Invest Dermatol 130:2412–2422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Fujiwara T, Fukushi J, Yamamoto S et al (2011) Macrophage infiltration predicts a poor prognosis for human ewing sarcoma. Am J Pathol 179:1157–1170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964

    Article  CAS  PubMed  Google Scholar 

  21. Grabenbauer GG, Lahmer G, Distel L et al (2006) Tumor-infiltrating cytotoxic T cells but not regulatory T cells predict outcome in anal squamous cell carcinoma. Clin Cancer Res 12:3355–3360

    Article  CAS  PubMed  Google Scholar 

  22. Gunthner R, Anders HJ (2013) Interferon-regulatory factors determine macrophage phenotype polarization. Mediators Inflamm 2013:731023

    PubMed Central  PubMed  Google Scholar 

  23. Gwak JM, Jang MH, Kim DI et al (2015) Prognostic value of tumor-associated macrophages according to histologic locations and hormone receptor status in breast cancer. PLoS One 10:e0125728

    Article  PubMed Central  PubMed  Google Scholar 

  24. Heusinkveld M, Van Der Burg SH (2011) Identification and manipulation of tumor associated macrophages in human cancers. J Transl Med 9:216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Ichimura T, Morikawa T, Kawai T et al (2014) Prognostic significance of CD204-positive macrophages in upper urinary tract cancer. Ann Surg Oncol 21:2105–2112

    Article  PubMed  Google Scholar 

  26. Kong LQ, Zhu XD, Xu HX et al (2013) The clinical significance of the CD163 + and CD68 + macrophages in patients with hepatocellular carcinoma. PLoS One 8:e59771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Kreider T, Anthony RM, Urban JF Jr et al (2007) Alternatively activated macrophages in helminth infections. Curr Opin Immunol 19:448–453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Kridel R, Xerri L, Gelas-Dore B et al (2015) The prognostic impact of CD163-positive macrophages in follicular lymphoma: a study from the BC Cancer Agency and the LYmphoma Study Association. Clin Cancer Res. doi:10.1158/1078-0432.CCR-14-3253

  29. Kubler K, Ayub TH, Weber SK et al (2014) Prognostic significance of tumor-associated macrophages in endometrial adenocarcinoma. Gynecol Oncol 135:176–183

    Article  PubMed  Google Scholar 

  30. Lau SK, Chu PG, Weiss LM (2004) CD163: a specific marker of macrophages in paraffin-embedded tissue samples. Am J Clin Pathol 122:794–801

    Article  PubMed  Google Scholar 

  31. Lee JH, Lee GT, Woo SH et al (2013) BMP-6 in renal cell carcinoma promotes tumor proliferation through IL-10-dependent M2 polarization of tumor-associated macrophages. Cancer Res 73:3604–3614

    Article  CAS  PubMed  Google Scholar 

  32. Lin EY, Li JF, Gnatovskiy L et al (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66:11238–11246

    Article  CAS  PubMed  Google Scholar 

  33. Liu CY, Xu JY, Shi XY et al (2013) M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. Lab Invest 93:844–854

    Article  CAS  PubMed  Google Scholar 

  34. Ma J, Liu L, Che G et al (2010) The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer 10:112

    Article  PubMed Central  PubMed  Google Scholar 

  35. Mantovani A, Biswas SK, Galdiero MR et al (2013) Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 229:176–185

    Article  CAS  PubMed  Google Scholar 

  36. Mantovani A, Sica A, Sozzani S et al (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686

    Article  CAS  PubMed  Google Scholar 

  37. Marchesi F, Cirillo M, Bianchi A et al (2014) High density of CD68 +/CD163 + tumour-associated macrophages (M2-TAM) at diagnosis is significantly correlated to unfavorable prognostic factors and to poor clinical outcomes in patients with diffuse large B-cell lymphoma. Hematol Oncol 33:110–2

    Article  PubMed  Google Scholar 

  38. Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000prime reports 6:13

  39. Martinez FO, Helming L, Milde R et al (2013) Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences. Blood 121:e57–69

    Article  CAS  PubMed  Google Scholar 

  40. Mills CD, Kincaid K, Alt JM et al (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164:6166–6173

    Article  CAS  PubMed  Google Scholar 

  41. Munari F, Lonardi S, Cassatella MA et al (2011) Tumor-associated macrophages as major source of APRIL in gastric MALT lymphoma. Blood 117:6612–6616

    Article  CAS  PubMed  Google Scholar 

  42. Murphy K (2012) Janeway’s Immunobiology. Garland Science, London

    Google Scholar 

  43. Murray PJ, Allen JE, Biswas SK et al (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41:14–20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Nabeshima A, Matsumoto Y, Fukushi J et al (2015) Tumour-associated macrophages correlate with poor prognosis in myxoid liposarcoma and promote cell motility and invasion via the HB-EGF-EGFR-PI3K/Akt pathways. Br J Cancer 112:547–555

    Article  CAS  PubMed  Google Scholar 

  45. Nishio M, Endo T, Tsukada N et al (2005) Nurselike cells express BAFF and APRIL, which can promote survival of chronic lymphocytic leukemia cells via a paracrine pathway distinct from that of SDF-1alpha. Blood 106:1012–1020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:49–61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Pantano F, Berti P, Guida FM et al (2013) The role of macrophages polarization in predicting prognosis of radically resected gastric cancer patients. J Cell Mol Med 17:1415–1421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Peiser L, Gordon S (2001) The function of scavenger receptors expressed by macrophages and their role in the regulation of inflammation. Microbes Infect 3:149–159

    Article  CAS  PubMed  Google Scholar 

  49. Pettersen JS, Fuentes-Duculan J, Suarez-Farinas M et al (2011) Tumor-associated macrophages in the cutaneous SCC microenvironment are heterogeneously activated. J Invest Dermatol 131:1322–1330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51

    Article  CAS  PubMed  Google Scholar 

  51. Sangaletti S, Di Carlo E, Gariboldi S et al (2008) Macrophage-derived SPARC bridges tumor cell-extracellular matrix interactions toward metastasis. Cancer Res 68:9050–9059

    Article  CAS  PubMed  Google Scholar 

  52. Satoh T, Takeuchi O, Vandenbon A et al (2010) The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol 11:936–944

    Article  CAS  PubMed  Google Scholar 

  53. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Taskinen M, Karjalainen-Lindsberg ML, Nyman H et al (2007) A high tumor-associated macrophage content predicts favorable outcome in follicular lymphoma patients treated with rituximab and cyclophosphamide-doxorubicin-vincristine-prednisone. Clin Cancer Res 13:5784–5789

    Article  CAS  PubMed  Google Scholar 

  55. Tauber AI (2003) Metchnikoff and the phagocytosis theory. Nat Rev Mol Cell Biol 4:897–901

    Article  CAS  PubMed  Google Scholar 

  56. Tugal D, Liao X, Jain MK (2013) Transcriptional control of macrophage polarization. Arterioscler Thromb Vasc Biol 33:1135–1144

    Article  CAS  PubMed  Google Scholar 

  57. Van Esch EM, Van Poelgeest MI, Trimbos JB et al (2015) Intraepithelial macrophage infiltration is related to a high number of regulatory T cells and promotes a progressive course of HPV-induced vulvar neoplasia. Int J Cancer 136:E85–E94

    Article  PubMed  Google Scholar 

  58. Wehrhan F, Buttner-Herold M, Hyckel P et al (2014) Increased malignancy of oral squamous cell carcinomas (oscc) is associated with macrophage polarization in regional lymph nodes – an immunohistochemical study. BMC Cancer 14:522

    Article  PubMed Central  PubMed  Google Scholar 

  59. Weiss M, Blazek K, Byrne AJ et al (2013) IRF5 is a specific marker of inflammatory macrophages in vivo. Mediators Inflamm 2013:245804

    PubMed Central  PubMed  Google Scholar 

  60. Xue J, Schmidt SV, Sander J et al (2014) Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40:274–288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Zhang QW, Liu L, Gong CY et al (2012) Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS One 7:e50946

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Niedobitek.

Ethics declarations

Interessenkonflikt

G. Niedobitek, M.H. Barros, J.H. Dreyer, F. Hauck, D. Al-Sheikhyaqoob geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Additional information

Schwerpunktherausgeber

F. Fend, Tübingen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niedobitek, G., Barros, M., Dreyer, J. et al. Tumorassoziierte Makrophagen. Pathologe 36, 477–484 (2015). https://doi.org/10.1007/s00292-015-0054-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-015-0054-7

Schlüsselwörter

Keywords

Navigation