Skip to main content
Log in

Molekulare Diagnostik in der Neuropathologie

Molecular diagnostics in neuropathology

  • Schwerpunkt: Molekularpathologie
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Wie in nur wenigen anderen Bereichen der Onkologie sind in der Neuroonkologie molekulare Marker mittlerweile zu einem wesentlichen Bestandteil von Therapieentscheidungen geworden. Diese Entwicklung wird ermöglicht durch eine rege wissenschaftliche Aktivität zur Erforschung der molekularen Grundlagen von Hirntumoren sowie durch einen hohen prozentualen Einschluss von Hirntumorpatienten in Studien, in denen molekulare Parameter bestimmt und mit klinischer Aussagekraft verknüpft werden. Erste Schritte auf dem Weg zu differenzierten Therapiestrategien sind also beschritten, ihre Umsetzung erfordert Detailkenntnisse und eine intensive Vernetzung zwischen allen an der Behandlung beteiligten Fachdisziplinen.

Abstract

As in only few other areas of oncology, molecular markers in neurooncology have become an integral part of clinical decision-making. This development is driven by a bustling scientific activity exploring the molecular basis and pathogenesis of human brain tumors. In addition, a high percentage of brain tumor patients are included in clinical studies in which molecular markers are assessed and linked with clinical informativeness. First steps towards more differentiated therapeutic strategies against brain tumors have thus been taken. The implementation in the clinical and diagnostic routine requires a detailed knowledge and a close collaboration between all medical disciplines involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Bettstetter M, Dechant S, Ruemmele P et al (2008) MethyQESD, a robust and fast method for quantitative methylation analyses in HNPCC diagnostics using formalin-fixed and paraffin-embedded tissue samples. Lab Invest 88:1367–1375

    Article  CAS  PubMed  Google Scholar 

  2. Cairncross JG, Ueki K, Zlatescu MC et al (1998) Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 90:1473–1479

    Article  CAS  PubMed  Google Scholar 

  3. Cairncross G, Wang M, Shaw E et al (2013) Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol 31:337–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Hasselblatt M, Riesmeier B, Lechtape B et al (2011) BRAF-KIAA1549 fusion transcripts are less frequent in pilocytic astrocytomas diagnosed in adults. Neuropathol Appl Neurobiol 37:803–806

    Article  CAS  PubMed  Google Scholar 

  5. Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003

    Article  CAS  PubMed  Google Scholar 

  6. Horbinski C (2013) To BRAF or not to BRAF: is that even a question anymore? J Neuropathol Exp Neurol 72:2–7

    Article  PubMed Central  PubMed  Google Scholar 

  7. Jones DT, Kocialkowski S, Liu L et al (2008) Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68:8673–8677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Louis DN, Perry A, Burger P et al (2014) International society of neuropathology-haarlem consensus guidelines for nervous system tumor classification and grading. Brain Pathol 24:429–435

    Article  PubMed  Google Scholar 

  9. Malmstrom A, Gronberg BH, Marosi C et al (2012) Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol 13:916–926

    Article  PubMed  Google Scholar 

  10. Natte R, Van Eijk R, Eilers P et al (2005) Multiplex ligation-dependent probe amplification for the detection of 1p and 19q chromosomal loss in oligodendroglial tumors. Brain Pathol 15:192–197

    Article  CAS  PubMed  Google Scholar 

  11. Nikiforova MN, Hamilton RL (2011) Molecular diagnostics of gliomas. Arch Pathol Lab Med 135:558–568

    CAS  PubMed  Google Scholar 

  12. Northcott PA, Korshunov A, Witt H et al (2011) Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 29:1408–1414

    Article  PubMed  Google Scholar 

  13. Ogino S, Kawasaki T, Brahmandam M et al (2006) Precision and performance characteristics of bisulfite conversion and real-time PCR (MethyLight) for quantitative DNA methylation analysis. J Mol Diagn 8:209–217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Pfister S, Remke M, Benner A et al (2009) Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J Clin Oncol 27:1627–1636

    Article  PubMed  Google Scholar 

  15. Reifenberger G, Malzkorn B, Acker T et al (2014) Results of the international interlaboratory comparison of MGMT promoter methylation analysis involving twenty-three academic centers in Germany, Austria and the Netherlands. Neuro Oncol 16(Suppl 3):iii49–iii50

    Article  Google Scholar 

  16. Riemenschneider MJ, Hegi ME, Reifenberger G (2010) MGMT promoter methylation in malignant gliomas. Target Oncol 5:161–165

    Article  PubMed  Google Scholar 

  17. Riemenschneider MJ, Louis DN, Weller M et al (2013) Refined brain tumor diagnostics and stratified therapies: the requirement for a multidisciplinary approach. Acta Neuropathol 126:21–37

    Article  PubMed  Google Scholar 

  18. Ryan SL, Schwalbe EC, Cole M et al (2012) MYC family amplification and clinical risk-factors interact to predict an extremely poor prognosis in childhood medulloblastoma. Acta Neuropathol 123:501–513

    Article  CAS  PubMed  Google Scholar 

  19. Sampson JH, Heimberger AB, Archer GE et al (2010) Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 28:4722–4729

    Article  PubMed Central  PubMed  Google Scholar 

  20. Schumacher T, Bunse L, Pusch S et al (2014) A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 512:324–327

    Article  CAS  PubMed  Google Scholar 

  21. Schwartzentruber J, Korshunov A, Liu XY et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231

    Article  CAS  PubMed  Google Scholar 

  22. Stupp R, Mason WP, Van Den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  23. Sturm D, Witt H, Hovestadt V et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437

    Article  CAS  PubMed  Google Scholar 

  24. Taylor MD, Northcott PA, Korshunov A et al (2012) Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 123:465–472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Turcan S, Rohle D, Goenka A et al (2012) IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483:479–483

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Van Den Bent MJ, Brandes AA, Taphoorn MJ et al (2013) Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol 31:344–350

    Article  Google Scholar 

  27. Venneti S, Santi M, Felicella MM et al (2014) A sensitive and specific histopathologic prognostic marker for H3F3A K27M mutant pediatric glioblastomas. Acta Neuropathol 128:743–753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Verhaak RG, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Vlassenbroeck I, Califice S, Diserens AC et al (2008) Validation of real-time methylation-specific PCR to determine O6-methylguanine-DNA methyltransferase gene promoter methylation in glioma. J Mol Diagn 10:332–337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Weller M, Van Den Bent M, Hopkins K et al (2014) EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol 15:e395–403

    Article  PubMed  Google Scholar 

  31. Wick W, Platten M, Meisner C et al (2012) Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomised, phase 3 trial. Lancet Oncol 13:707–715

    Article  CAS  PubMed  Google Scholar 

  32. Wick W, Meisner C, Hentschel B et al (2013) Prognostic or predictive value of MGMT promoter methylation in gliomas depends on IDH1 mutation. Neurology 81:1515–1522

    Article  CAS  PubMed  Google Scholar 

  33. Wiestler B, Capper D, Holland-Letz T et al (2013) ATRX loss refines the classification of anaplastic gliomas and identifies a subgroup of IDH mutant astrocytic tumors with better prognosis. Acta Neuropathol 126:443–451

    Article  CAS  PubMed  Google Scholar 

  34. Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Dietmaier.

Ethics declarations

Interessenkonflikt

W. Dietmaier, J. Lorenz und M.J. Riemenschneider geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Additional information

Schwerpunktherausgeber

C. Röcken, Kiel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dietmaier, W., Lorenz, J. & Riemenschneider, M. Molekulare Diagnostik in der Neuropathologie. Pathologe 36, 171–180 (2015). https://doi.org/10.1007/s00292-015-0002-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-015-0002-6

Schlüsselwörter

Keywords

Navigation