Skip to main content

Chancen und Risiken der blutbasierten molekularpathologischen Analytik zirkulierender Tumorzellen (CTC) und zellfreier DNA (cfDNA) in der personalisierten Krebstherapie

Eine Stellungnahme des Arbeitskreises „Liquid Biopsy“ der AG Molekularpathologie in der Deutschen Gesellschaft für Pathologie (DGP)

Chances and risks of blood-based molecular pathological analysis of circulating tumor cells (CTC) and cell-free DNA (cfDNA) in personalized cancer therapy

Positional paper from the study group on liquid biopsy of the working group for molecular pathology in the German Society of Pathology (DGP)

This is a preview of subscription content, access via your institution.

Literatur

  1. Ascierto PA, Minor D, Ribas A, Lebbe C et al (2013) Phase II trial (BREAK-2) of the BRAF inhibitor dabrafenib (GSK2118436) in patients with metastatic melanoma. J Clin Oncol 31:3205–3211

    CAS  PubMed  Article  Google Scholar 

  2. Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A et al (2013) Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol 31(6):539–544

    CAS  PubMed  Article  Google Scholar 

  3. Balic M, Dandachi N, Lin H, Datar RH (2005) Cancer metastasis: advances in the detection and characterization of disseminated tumour cells facilitate clinical translation. Natl Med J India 18:250–255

    PubMed  Google Scholar 

  4. Bettegowda C, Sausen M, Leary RJ, Kinde I et al (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6:224ra24

    PubMed Central  PubMed  Article  Google Scholar 

  5. Cohen SJ, Punt CJA, Iannotti N et al (2008) Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol 26:3213–3221

    PubMed  Article  Google Scholar 

  6. Czyż ZT, Hoffmann M, Schlimok G et al (2014) Reliable single cell array CGH for clinical samples. PLoS One 9(1):e85907

    PubMed Central  PubMed  Article  Google Scholar 

  7. Dawson SJ, Tsui DW, Murtaza M, Biggs H et al (2013) Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 368:1199–1209

    CAS  PubMed  Article  Google Scholar 

  8. Bono JS de, Scher HI, Montgomery RB, Parker C et al (2008) Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res 14:6302–6309

    PubMed  Article  Google Scholar 

  9. Diaz LA Jr, Williams RT, Wu J, Kinde I et al (2012) The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486:537–540

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Diaz LA Jr, Bardelli A (2014) Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 32(6):579–586 (Epub ahead of print)

    PubMed  Article  Google Scholar 

  11. Diehl F, Schmidt K, Choti MA, Romans K et al (2008) Circulating mutant DNA to assess tumor dynamics. Nat Med 14:985–990

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  12. Diehl F, Li M, Dressman D, He Y et al (2005) Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci U S A 102:16368–16373

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  13. Diehl F, Li M, He Y, Kinzler KW et al (2006) BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions. Nat Methods 3:551–559

    CAS  PubMed  Article  Google Scholar 

  14. Fehm T, Sauerbrei W (2010) Information from CTC measurements for metastatic breast cancer prognosis-we should do more than selecting an „optimal cut point“. Breast Cancer Res Treat 122:219–220

    CAS  PubMed  Article  Google Scholar 

  15. Hayes DF, Cristofanilli M, Budd GT, Ellis MJ et al (2006) Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res 12:4218–4224

    CAS  PubMed  Article  Google Scholar 

  16. Heitzer E, Auer M, Gasch C, Pichler M et al (2013) Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res 73:2965–2975

    CAS  PubMed  Article  Google Scholar 

  17. Ilie M, Long E, Butori C, Hofman V et al (2012) ALK-gene rearrangement: a comparative analysis on circulating tumour cells and tumour tissue from patients with lung adenocarcinoma. Ann Oncol 23:2907–2913

    CAS  PubMed  Article  Google Scholar 

  18. Kin C, Kidess E, Poultsides GA et al (2013) Colorectal cancer diagnostics: biomarkers, cell-free DNA, circulating tumor cells and defining heterogeneous populations by single-cell analysis. Expert Rev Mol Diagn 13:581–599

    CAS  PubMed  Article  Google Scholar 

  19. Klein CA (2013) Selection and adaptation during metastatic cancer progression. Nature 501(7467):365–372

    CAS  PubMed  Article  Google Scholar 

  20. Li M, Chen WD, Papadopoulos N, Goodman SN et al (2009) Sensitive digital quantification of DNA methylation in clinical samples. Nat Biotechnol 27:858–863

    PubMed Central  PubMed  Article  Google Scholar 

  21. Lianidou ES, Markou A (2011) Circulating tumor cells in breast cancer: detection systems, molecular characterization, and future challenges. Clin Chem 57:1242–1255

    CAS  PubMed  Article  Google Scholar 

  22. Lo YM, Chiu RWK (2011) Plasma nucleic acid analysis by massive parallel sequencing: pathological insights and diagnostic implications. J Pathol 225:316–323

    Article  Google Scholar 

  23. Murtaza M, Dawson SJ, Tsui DW, Gale D et al (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497:108–112

    CAS  PubMed  Article  Google Scholar 

  24. Oxnard GR, Paweletz CP, Kuang Y, Mach SL et al (2014) Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin Cancer Res 20(6):1698–1705 (Epub ahead of print)

    CAS  PubMed  Article  Google Scholar 

  25. Pantel K, Alix-Panabières C (2013) Real-time liquid biopsy in cancer patients: fact or fiction? Cancer Res 73:6384–6388

    CAS  PubMed  Article  Google Scholar 

  26. Pantel K, Denève E, Nocca D, Coffy A et al (2012) Circulating epithelial cells in patients with benign colon diseases. Clin Chem 58:936–940

    CAS  PubMed  Article  Google Scholar 

  27. Parkinson DR, Dracopoli N, Petty BG, Compton C et al (2012) Considerations in the development of circulating tumor cell technology for clinical use. J Transl Med 10:138

    PubMed Central  PubMed  Article  Google Scholar 

  28. Plaks V, Koopman CD, Werb Z (2013) Cancer. Circulating tumor cells. Science 341:1186–1188

    CAS  PubMed  Article  Google Scholar 

  29. Punnoose EA, Atwal S, Liu W, Raja R et al (2012) Evaluation of circulating tumor cells and circulating tumor DNA in non-small cell lung cancer: association with clinical endpoints in a phase II clinical trial of pertuzumab and erlotinib. Clin Cancer Res 18:2391–2401

    CAS  PubMed  Article  Google Scholar 

  30. Rahbari NN, Bork U, Kircher A, Nimitz T et al (2012) Compartmental differences of circulating tumor cells in colorectal cancer. Ann Surg Oncol 19:2195–2202

    PubMed  Article  Google Scholar 

  31. Sakaizawa K, Goto Y, Kiniwa Y, Uchiyama A et al (2012) Mutation analysis of BRAF and KIT in circulating melanoma cells at the single cell level. Br J Cancer 106:939–946

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  32. Stoecklein NH, Klein CA (2010) Genetic disparity between primary tumours, disseminated tumour cells, and manifest metastasis. Int J Cancer 126(3):589–598

    CAS  PubMed  Article  Google Scholar 

  33. Vogelstein B, Kinzler KW (1999) Digital PCR. Proc Natl Acad Sci U S A 96:9236–9241

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. E. Dahl, A. Jung, J. Fassunke, M. Hummel, R. Penzel, W. Dietmaier, S. Laßmann geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Dahl.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dahl, E., Jung, A., Fassunke, J. et al. Chancen und Risiken der blutbasierten molekularpathologischen Analytik zirkulierender Tumorzellen (CTC) und zellfreier DNA (cfDNA) in der personalisierten Krebstherapie. Pathologe 36, 92–97 (2015). https://doi.org/10.1007/s00292-014-2069-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-014-2069-x