Advertisement

Der Pathologe

, Volume 36, Issue 1, pp 11–15 | Cite as

Moderne Diagnoseverfahren in der Dermatoonkologie

  • C. Kellner
  • U. Reinhold
Schwerpunkt

Zusammenfassung

Hintergrund

Neue Technologien wie konfokale Laserscanmikroskopie (KLSM), optische Kohärenztomographie (OCT), elektrische Impedanzspektroskopie (EIS) und Multispektralanalyse gewinnen einen immer größeren Stellenwert im Bereich der dermatoonkologischen Diagnostik. Die Auflichtmikroskopie sowie die Histopathologie können dadurch ergänzt werden, um eine noch exaktere Diagnose von Hautläsionen stellen zu können.

Fragestellung

Steigende Relevanz der neuen Systeme bei Diagnose und Verlaufskontrolle von Therapie in der Dermatoonkologie. Darstellung der Technik und des Einsatzbereichs bei verschiedenen zu diagnostizierenden Hautläsionen.

Material und Methoden

Darstellung wissenschaftlich themenbezogener relevanter Studien, Darstellung erhobener statistischer Daten, Diskussion von Grundlagenarbeiten und Expertenempfehlungen.

Ergebnisse

Das diagnostische Spektrum der dermatologischen Onkologie hat sich in den letzten Jahren maßgeblich erweitert. Neue Technologien wie KLSM, OCT, EIS und die Multispektralanalyse sind nichtinvasiv und somit schmerzfrei für den Patienten. Sie liefern in nur wenigen Minuten präzise Daten und Befunde und erlauben dem Dermatologen eine genauere diagnostische Aussage über benigne oder maligne melanozytäre Hautläsionen oder die verschiedenen Formen des weißen Hautkrebses.

Schlussfolgerung

In den letzten Jahren haben sich die nichtinvasiven bilddiagnostischen und -analytischen Verfahren in der Dermatoonkologie immer mehr etabliert und die klassische Dermatoskopie sowie die Histopathologie weitgehend ergänzt. Auch hinsichtlich der Verlaufskontrolle können unnötige Gewebeentnahmen und Narben dem Patienten erspart werden.

Schlüsselwörter

Konfokale Laserscanmikroskopie Optische Kohärenztomographie Elektronische Impedanzspektroskopie Multispektralanalyse Verlaufskontrollen 

Modern diagnostic procedures in dermatological oncology

Abstract

Background

New technologies, such as confocal laser scanning microscopy (CLSM), optical coherence tomography (OCT), electrical impedance spectroscopy (EIS) and multispectral analysis have greatly enriched the possibilities of diagnostics in dermatological oncology. They can be supplementary tools to dermatoscopy and histopathology to make a more precise diagnosis of skin lesions.

Objectives

Increasing relevance of new systems for diagnosis and monitoring of dermatological therapy. Presentation of the technology and the diagnostic range of application for various skin lesions.

Material and methods

Presentation of scientifically relevant studies and statistical data, discussion of basic research and expert recommendations.

Results

The diagnostic spectrum of dermatological oncology has been significantly enriched in recent years. New technologies, such as CLSM, OCT, EIS and multispectral analysis are non-invasive and therefore painless for the patient. In only a few minutes these techniques deliver valid data and findings and provide dermatologists with more accurate diagnostic information about benign or malignant melanocytic skin lesions or the various forms of white skin cancer.

Conclusion

In recent years, non-invasive diagnostic and analytical imaging procedures have been progressively established in dermatological oncology and supplement classical dermatoscopy and histopathology. With respect to the follow-up of different therapeutic modalities unnecessary tissue biopsies and scars can be reduced for patients.

Keywords

Confocal laser scanning microscopy Optical coherence tomography Electrical impedance spectroscopy Multispectral analysis Follow-up 

Notes

Danksagung

Die Autorin dankt Herrn Prof. Dr. Uwe Reinhold für die Hilfe beim Erstellen des Manuskripts.

Einhaltung ethischer Richtlinien

Interessenkonflikt. C. Kellner und U. Reinhold geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Aberg P, Birgersson U, Elsner P et al (2011) Electrical impedance spectroscopy and the diagnostic accuracy for malignant melanoma. Exp Dermatol 20(8):648–652. doi:10.1111/j.1600-0625.2011.01285.x (Epub 2011 May 4)PubMedCrossRefGoogle Scholar
  2. 2.
    Abuzahra F, Spöler F, Först M et al (2010) Pilot study: optical coherence tomography as a non-invasive diagnostic perspective for real time visualisation of onychomycosis. Mycoses 53(4):334–339. doi:10.1111/j.1439-0507.2009.01717.x (Epub 2009 Sep 28)PubMedGoogle Scholar
  3. 3.
    Banzhaf CA, Themstrup L, Ring HC et al (2014) Optical coherence tomography imaging of non-melanoma skin cancer undergoing imiquimod therapy. Skin Res Technol 20(2):170–176. doi:10.1111/srt.12102 (Epub 2013 Sep 16)PubMedCrossRefGoogle Scholar
  4. 4.
    Banzhaf CA, Themstrup L, Ring HC et al (2013) In vivo imaging of Sarcoptes scabiei infestation using optical coherence tomography. Case Rep Dermatol 5(2):156–162. doi:10.1159/000352066PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Coleman AJ, Richardson TJ, Orchard G et al (2013) Histological correlates of optical coherence tomography in non-melanoma skin cancer. Skin Res Technol 19(1):10–19. doi:10.1111/j.1600-0846.2012.00626.x (Epub 2012 Jun 28)PubMedCrossRefGoogle Scholar
  6. 6.
    Fercher AF, Hitzenberger CK, Drexler W et al (1993) In vivo optical coherence tomography. Am J Ophtalmol 116:113–114CrossRefGoogle Scholar
  7. 7.
    Fercher AF, Mengedoht K, Werner W (1988) Eye-length measurement by interferometry with partially coherent light. Opt Lett 13:186–188PubMedCrossRefGoogle Scholar
  8. 8.
    Gambichler T, Jaedicke V, Terras S (2011) Optical coherence tomography in dermatology: technical and clinical aspects. Arch Dermatol Res 303:457–473PubMedCrossRefGoogle Scholar
  9. 9.
    Gerger A, Koller S, Weger W et al (2006) Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors. Cancer 107:193–200PubMedCrossRefGoogle Scholar
  10. 10.
    Guitera P et al (2013) Improving management and patient care in Lentigo maligna by mapping with in vivo confocal microscopy. JAMA Dermatol 149(6):692–698PubMedCrossRefGoogle Scholar
  11. 11.
    Guitera P, Menzies SW, Longo C et al (2012) In vivo confocal microscopy for diagnosis of melanoma and basal cell carcinoma using a two-step method: analysis of 710 consecutive clinically equivocal cases. J Invest Dermatol 132:2386–2394PubMedCrossRefGoogle Scholar
  12. 12.
    Guitera P, Pellacani G, Crotty KA et al (2010) The impact of in vivo reflectance confocal microscopy on the diagnostic accuracy of lentigo maligna and equivocal pigmented and nonpigmented macules of the face. J Invest Dermatol 130(8):2080–2091PubMedCrossRefGoogle Scholar
  13. 13.
    Gutkowicz-Krusin D, Elbaum M, Jacobs A et al (2000) Precision of automatic measurements of pigmented skin lesion parameters with a MelaFind(TM) multispectral digital dermoscope. Melanoma Res 10(6):563–570PubMedCrossRefGoogle Scholar
  14. 14.
    Halpern A, Rajadhyaksha M, Toledo-Crow R (2005) Bringing histology to the bedside. J Invest Dermatol 124:8–10Google Scholar
  15. 15.
    Hinz T, Ehler LK, Hornung T et al (2012) Preoperative characterization of Basal cell carcinoma comparing tumour thickness measurement by optical coherence tomography, 20-MHz ultrasound and histopathology. Acta Derm Venereol 92(2):132–137PubMedCrossRefGoogle Scholar
  16. 16.
    http://www.awmf.org/uploads/tx_szleitlinien/013-076l_S1_Konfokale_Lasermikroskopie_2011-07_01.pdfGoogle Scholar
  17. 17.
    http://www.melafind.de/wp-content/uploads/M100-BR-005RevA-_PhysDetail_f_rev_lowres.pdfGoogle Scholar
  18. 18.
    http://www.octnews.org/articles/5178489/michelson-diagnostics-to-launch-enhanced-software-/Google Scholar
  19. 19.
    Huang D, Swanson EA, Lin CP et al (1991) Optical coherence tomography. Science 254:1178–1181PubMedCrossRefGoogle Scholar
  20. 20.
    Huzaira M, Rius F, Rajadhyaksha M et al (2001) Topogtaphic variations in normal skin, as viewed by in vivo reflectance confocal microscopy. J Invest Dermatol 116(6):846–852PubMedCrossRefGoogle Scholar
  21. 21.
    Langeey RG, Burton E, Walsh N et al (2006) In vivo confocal scanning lasaer microscopy of benign letnigines: comparisonto conventional histology and in vivo characteristics of lentigo maligna. J Am Acad Dermatol 55:88–97CrossRefGoogle Scholar
  22. 22.
    Maier T, Braun-Falco M, Hinz T et al (2012) Morphology of basal cell carcinoma in high definition optical coherence tomography: en-face and slice imaging mode, and comparison with histology. J Eur Acad Dermatol Venereol. doi:10.1111/j.1468-3083.2012.04551.x (Epub ahead of print)Google Scholar
  23. 23.
    Mogensen M, Jaergensen TM, Nurnberg BM et al (2009) Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: observer-blinded evaluation by dermatologists and pathologists. Dermatol Surg 35(6):965–972PubMedCrossRefGoogle Scholar
  24. 24.
    Mohr P, Birgersson U, Berking C et al (2013) Electrical impedance spectroscopy as a potential adjunct diagnostic tool for cutaneous melanoma. Skin Res Technol 19(2):75–83. doi:10.1111/srt.12008 (Epub 2013 Jan 27)PubMedCrossRefGoogle Scholar
  25. 25.
    Monheit G, Cognetta AB, Ferris L et al (2011) The performance of MelaFind: a prospective multicenter study. Arch Dermatol 147(2):188–194PubMedCrossRefGoogle Scholar
  26. 26.
    Nori S, Rius-Díaz F, Cuevas J et al (2004) Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study. J Am Acad Dermatol 51:923–930PubMedCrossRefGoogle Scholar
  27. 27.
    Pellacani G, Cesinaro A, Seidenari S (2005) Reflectance-mode confocal microscopy of pigmented skin lesions – improvement in melanoma diagnostic specificity. J Am Acad Dermatol 53(6):979–985PubMedCrossRefGoogle Scholar
  28. 28.
    Pellacani G, Guitera P, Longo C et al (2007) The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions. J Invest Dermatol. doi:10.1038/sj.jid.5700993Google Scholar
  29. 29.
    Pellacani G, Longo C, Malvehy J et al (2008) In vivo confocal microscopic and histopathologic correlations of dermoscopic features in 202 melanocytic lesions. Arch Dermatol 144(12):1597–1608PubMedCrossRefGoogle Scholar
  30. 30.
    Rajadhyaksha M, Gonzalez S, Zavislan JM et al (1999) In vivo confocal laser microscopy of human skin II: advances in instrumentation and comparison with histology. J Invest Dermatol 113:293–303PubMedCrossRefGoogle Scholar
  31. 31.
    Rajadhyaksha M, Grossman M, Esterowitz D et al (1995) In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast. J Invest Dermatol 104:946–952PubMedCrossRefGoogle Scholar
  32. 32.
    Hofmann-Wellenhof R, Pellacani G, Malvehy J, Soyer HP (Hrsg) (2012) Reflectance confocal microscopy for skin diseases. Springer, Berlin Heidelberg New YorkGoogle Scholar
  33. 33.
    González S, Gill M, Halpern AC (Hrsg) (2008) Reflectance confocal microscopy of cutaneous tumors, an atlas with clinical, dermoscopic and histological correlations. informa healthcare, LondonGoogle Scholar
  34. 34.
    Rothmund G, Sattler EC, Kaestle R et al (2013) Confocal laser scanning microscopy as a new valuable tool in the diagnosis of onychomycosis – comparison of six diagnostic methods. Mycoses 56(1):47–55. doi:10.1111/j.1439-0507.2012.02198.x (Epub 2012 Apr 23)PubMedCrossRefGoogle Scholar
  35. 35.
    Sattler E et al (2012) How long does protection last? – in vivo fluorescence confocal laser scanning imaging fort he evaluation of the kincetics of a topically applied lotion in an everyday setting. Skin Res Technol 18(3):370–377PubMedCrossRefGoogle Scholar
  36. 36.
    Schmitz L, Reinhold U, Bierhoff E, Dirschka T (2013) Optical coherence tomography: its role in daily dermatological practice. J Dtsch Dermatol Ges 11(6):499–507. doi:10.1111/ddg.12073 (Epub 2013 Apr 9)PubMedGoogle Scholar
  37. 37.
    Wells R, Gutkowicz-Krusin D, Veledar E et al (2012) Comparison of diagnostic and management sensitivity to melanoma between dermatologists and MelaFind: a pilot study. Arch Dermatol 148(9):1083–1084PubMedCrossRefGoogle Scholar
  38. 38.
    Welzel J, Lankenau E, Birngruber R, Engelhardt R (1997) Optical coherence tomography of the human skin. J Am Acad Dermatol 37:958–963PubMedCrossRefGoogle Scholar
  39. 39.
    Welzel J (2001) Optical coherence tomography in dermatology: a review. Skin Res Technol 7:1–9PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Dermatologisches Zentrum Bonn, FriedensplatzBonnDeutschland

Personalised recommendations