Skip to main content
Log in

Molekulare Diagnostik bei melanozytären Tumoren

Molecular diagnostics of melanomas

  • Schwerpunkt
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Technische Fortschritte haben das Verständnis der genetischen Alterationen beim malignen Melanom deutlich befördert. Die Verfeinerung der Methoden ermöglicht mittlerweile auch bei herkömmlich formalinfixiertem Material eine ausführliche molekularpathologische Analyse.

Fragestellung

Es werden die verschiedenen aktuell verwendeten genetischen Methoden, ihre Stärken und Schwächen sowie ihr Potenzial für die Zukunft dargestellt.

Material und Methode

Die verfügbare Literatur sowie Einschätzungen der maßgeblichen Experten und persönliche Erfahrungen mit den beschriebenen Techniken wurden berücksichtigt.

Ergebnisse

Die neuentwickelten genetischen Methoden können bei der Differenzierung zwischen benignen und malignen Tumoren helfen. Zusätzlich sind für die Entscheidung, welche der inzwischen verfügbaren zielgerichteten Therapien für metastasierte Tumoren geeignet sind, Sequenzierungsmethoden notwendig.

Schlussfolgerung

Molekulargenetische Methoden sind inzwischen beim malignen Melanom integraler Bestandteil der Diagnostik und Therapie. Wie jede Methode hat auch diese ihre Schwächen und Grenzen, jedoch ist zu erwarten, dass einige davon im Zuge der weiteren technischen Entwicklung behoben werden. Als komplementierende Methode zur klassischen histopathologischen Begutachtung durch einen Pathologen wird die Rolle molekularer Diagnostik bei melanozytären Tumoren vermutlich weiterhin an Bedeutung zunehmen.

Abstract

Background

Technical advances have led to an intricate understanding of genetic alterations occurring in melanomas. Methodological improvements have made it possible to carry out a detailed molecular analysis of formalin-fixed, paraffin-embedded tissue samples.

Objectives

The currently available molecular genetic assays are presented with their individual strengths and weaknesses as well as their future potential for molecular analysis.

Methods

The available literature, assessments from different experts, as well as personal experiences with the different methods are presented and discussed.

Results

The molecular genetic methods introduced in recent years can be helpful in making a distinction between benign and malignant tumors. Additionally, DNA sequencing approaches are essential for stratifying which patients with metastasized tumors will benefit from available targeted therapies.

Conclusion

Molecular genetic assays are already a key element in terms of diagnosing and treating malignant melanoma. Similar to other methods, genetic assays have their weaknesses and limits, however, some of these will most likely be overcome in the course of future methodological advances. The role of molecular diagnostics as a complementary approach to customary histopathological review by a pathologist is likely to increase in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Ascierto PA, Schadendorf D, Berking C et al (2013) MEK162 for patients with advanced melanoma harbouring NRAS or Val600 BRAF mutations: a non-randomised, open-label phase 2 study. Lancet Oncol 14:249–256

    Article  CAS  PubMed  Google Scholar 

  2. Bastian BC, Leboit PE, Hamm H et al (1998) Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res 58:2170–2175

    CAS  PubMed  Google Scholar 

  3. Bauer J, Bastian BC (2006) Distinguishing melanocytic nevi from melanoma by DNA copy number changes: comparative genomic hybridization as a research and diagnostic tool. Dermatol Ther 19:40–49

    Article  PubMed  Google Scholar 

  4. Bauer J, Curtin JA, Pinkel D et al (2007) Congenital melanocytic nevi frequently harbor NRAS mutations but no BRAF mutations. J Invest Dermatol 127:179–182

    Article  CAS  PubMed  Google Scholar 

  5. Carvajal RD, Antonescu CR, Wolchok JD et al (2011) KIT as a therapeutic target in metastatic melanoma. JAMA 305:2327–2334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Curtin JA, Busam K, Pinkel D et al (2006) Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 24:4340–4346

    Article  CAS  PubMed  Google Scholar 

  7. Davies H, Bignell GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  CAS  PubMed  Google Scholar 

  8. Flaherty KT, Infante JR, Daud A et al (2012) Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 367:1694–1703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Flaherty KT, Puzanov I, Kim KB et al (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363:809–819

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Gerami P, Jewell SS, Morrison LE et al (2009) Fluorescence in situ hybridization (FISH) as an ancillary diagnostic tool in the diagnosis of melanoma. Am J Surg Pathol 33:1146–1156

    Article  PubMed  Google Scholar 

  11. Gerami P, Li G, Pouryazdanparast P et al (2012) A highly specific and discriminatory FISH assay for distinguishing between benign and malignant melanocytic neoplasms. Am J Surg Pathol 36:808–817

    Article  PubMed  Google Scholar 

  12. Griewank K, Westekemper H, Murali R et al (2013) Conjunctival melanomas harbor BRAF and NRAS mutations and copy number changes similar to cutaneous and mucosal melanomas. Clin Cancer Res 19:3143–3152

    Article  CAS  PubMed  Google Scholar 

  13. Griewank KG, Scolyer RA, Thompson JF et al (2014) Genetic alterations and personalized medicine in melanoma: progress and future prospects. J Natl Cancer Inst 106:djt435

    Article  PubMed  Google Scholar 

  14. Guldberg P, Thor Straten P, Birck A et al (1997) Disruption of the MMAC1/PTEN gene by deletion or mutation is a frequent event in malignant melanoma. Cancer Res 57:3660–3663

    CAS  PubMed  Google Scholar 

  15. Harbour JW, Onken MD, Roberson ED et al (2010) Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 330:1410–1413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Hodis E, Watson IR, Kryukov GV et al (2012) A landscape of driver mutations in melanoma. Cell 150:251–263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Horn S, Figl A, Rachakonda PS et al (2013) TERT promoter mutations in familial and sporadic melanoma. Science 339:959–961

    Article  CAS  PubMed  Google Scholar 

  18. Huang FW, Hodis E, Xu MJ et al (2013) Highly recurrent TERT promoter mutations in human melanoma. Science 339:957–959

    Article  CAS  PubMed  Google Scholar 

  19. Kerl K, Palmedo G, Wiesner T et al (2012) A proposal for improving multicolor FISH sensitivity in the diagnosis of malignant melanoma using new combined criteria. Am J Dermatopathol 34:580–585

    Article  PubMed  Google Scholar 

  20. Krauthammer M, Kong Y, Ha BH et al (2012) Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet 44:1006–1014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Martin M, Masshofer L, Temming P et al (2013) Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nat Genet 45:933–936

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Omholt K, Platz A, Kanter L et al (2003) NRAS and BRAF mutations arise early during melanoma pathogenesis and are preserved throughout tumor progression. Clin Cancer Res 9:6483–6488

    CAS  PubMed  Google Scholar 

  23. Pollock PM, Harper UL, Hansen KS et al (2003) High frequency of BRAF mutations in nevi. Nat Genet 33:19–20

    Article  CAS  PubMed  Google Scholar 

  24. Van Raamsdonk CD, Bezrookove V, Green G et al (2009) Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 457:599–602

    Article  Google Scholar 

  25. Van Raamsdonk CD, Griewank KG, Crosby MB et al (2010) Mutations in GNA11 in uveal melanoma. N Engl J Med 363:2191–2199

    Article  Google Scholar 

  26. Van Rooij N, Van Buuren MM, Philips D et al (2013) Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol 31:e439–e442

    Article  Google Scholar 

  27. Wei X, Walia V, Lin JC et al (2011) Exome sequencing identifies GRIN2A as frequently mutated in melanoma. Nat Genet 43:442–446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Wiesner T, He J, Yelensky R et al (2014) Kinase fusions are frequent in Spitz tumours and spitzoid melanomas. Nat Commun 5:3116

    PubMed Central  PubMed  Google Scholar 

  29. Wilson TR, Fridlyand J, Yan Y et al (2012) Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487:505–509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Wolchok JD, Kluger H, Callahan MK et al (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369:122–133

    Article  CAS  PubMed  Google Scholar 

Download references

Danksagungen

Der Autor bedankt sich bei Bastian Schilling, Annette Paschen, Alexandra Schweiger und Andreas Griewank für Vorschläge und Kommentare.

Einhaltung ethischer Richtlinien

Interessenkonflikt. K.G. Griewank gibt an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.G. Griewank.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Griewank, K. Molekulare Diagnostik bei melanozytären Tumoren. Pathologe 36, 30–36 (2015). https://doi.org/10.1007/s00292-014-2054-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-014-2054-4

Schüsselwörter

Keywords

Navigation