Skip to main content
Log in

Neuroendokrine Tumoren der Lunge

Vom kleinzelligen Lungenkarzinom bis zur diffusen idiopathischen pulmonalen neuroendokrinen Zellhyperplasie

Neuroendocrine tumors of the lungs

From small cell lung carcinoma to diffuse idiopathic pulmonary neuroendocrine cell hyperplasia

  • Schwerpunkt
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Die für 2015 angekündigte neue WHO-Klassifikation wird erstmalig die neuroendokrinen Tumoren (NET) der Lunge in einem Abschnitt gemeinsam abhandeln. Dabei wird zwischen High-grade-Tumoren, den kleinzelligen Lungenkarzinomen („small cell lung cancer“, SCLC) und großzelligen neuroendokrinen Karzinomen („large cell neuroendocrine carcinoma“, LCNEC), Intermediate-grade-Tumoren, den atypischen Karzinoiden (AC), und Low-grade-Tumoren, den typischen Karzinoiden (TC) sowie Vorläuferläsionen (diffuse idiopathische pulmonale neuroendokrine Zellhyperplasie, DIPNECH) unterschieden. Bisher waren die LCNEC im Kapitel der großzelligen Karzinome zu finden.

LCNEC konnten bisher nach der gültigen WHO-Klassifikation von 2004 diagnostiziert werden, die für Operationspräparate konzipiert ist. Danach sind wesentliche Kriterien ein neuroendokrines Wachstumsmuster, das am Biopsiematerial nicht oder schwer erkennbar sein kann, nichtkleinzellige zytologische Merkmale, eine Mitoserate von über 10/2 mm2 (im Mittel etwa 70–80/2 mm2), Tumorzellnekrosen und die immunhistochemische Positivität von mindestens einem anderen neuroendokrinen Marker als der neuronenspezifischen Enolase (NSE).

Die Gegenüberstellung aller neuroendokrinen Tumore der Lunge erlaubt einen direkteren Vergleich und eine bessere differenzialdiagnostische Abgrenzung der einzelnen Entitäten.

Abstract

The new World Health Organization (WHO) classification announced for 2015 will for the first time present all neuroendocrine tumors (NET) of the lungs in one single section. In this classification high grade small cell lung carcinoma (SCLC) and large cell neuroendocrine carcinoma (LCNEC) will be discriminated from intermediate grade atypical carcinoid (AC) and low grade typical carcinoid as well as from the preinvasive lesion diffuse idiopathic pulmonary neuroendocrine cell hyperplasia (DIPNECH). The LCNEC was previously listed under the section of large cell carcinomas. The LCNEC could previously be diagnosed according to the current WHO classification from 2004 which is designed for resection specimens. According to this the main diagnostic criteria are a neuroendocrine growth pattern which can be difficult or impossible to detect in biopsy material, non-small cell cytological features, more than 10 mitoses per 2 mm2 (mean 70–80 per 2 mm2), tumor cell necrosis, and an immunohistochemical positivity for at least one neuroendocrine marker other than neuron-specific enolase (NSE). The presentation of all neuroendocrine tumors of the lungs in one section allows a more direct comparison and a better differential diagnostic discrimination of the different entities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Ampollini L, Carbognani P, Rusca M, Bobbio A (2010) Resection of giant typical carcinoid tumor with cardiopulmonary bypass support. Thorac Cardiovasc Surg 58:494–502

    Article  Google Scholar 

  2. Dong HY, Liu W, Cohen P et al (2005) B-cell specific activation protein encoded by the PAX-5 gene is commonly expressed in Merkel cell carcinoma and small cell carcinomas. Am J Surg Pathol 29:687–692

    Article  PubMed  Google Scholar 

  3. Fernandez-Cuesta L, Peifer M, Lu X et al (2014) Frequent mutations in chromatin-remodelling genes in pulmonary carcinoids. Nat Commun 5:3518. doi:10.1038/ncomms4518

    Article  PubMed Central  PubMed  Google Scholar 

  4. Gottschling S, Jensen K, Herth FJF et al (2013) Lack of prognostic significance of neuroendocrine differentiation and stem cell antigen co-expression in resected early-stage non-small cell lung cancer. Anticancer Res 33:981–990

    PubMed  Google Scholar 

  5. Grohé C (2014) Neuroendokrine Lungentumoren. Pneumologie 68:455–477

    Article  PubMed  Google Scholar 

  6. Hassan MM, Phan A, Li D et al (2008) Risk factors associated with neuroendocrine tumors: a U.S.-based case-control study. Int J Cancer 123:867–873

    Article  CAS  PubMed  Google Scholar 

  7. Helmbold P, Lahtz C, Herpel E et al (2009) Frequent hypermethylation of RASSF1A tumour suppressor gene promoter and presence of Merkel cell polyomavirus in small cell lung cancer. Eur J Cancer 45:2207–2211

    Article  CAS  PubMed  Google Scholar 

  8. Huwer H, Kalweit G, Schäfer H, Eltze E (2011) Pulmonales Paragangliom: Fallbericht und Literaturübersicht. Pneumologie 65:742–744

    Article  CAS  PubMed  Google Scholar 

  9. Iyoda A, Jiang S-X, Travis WD et al (2013) Clinicopathological features and the impact of the new TNM classification of malignant tumors in patients with pulmonary large cell neuroendocrine carcinoma. Mol Clin Oncol 1:437–443

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Junker K, Länger F, Schnabel PA (2013) Update Pneumopathologie – Bericht der AG Pneumopathologie der Deutschen Gesellschaft für Pathologie. Pathologe 34(Suppl 2):304–307

    Article  PubMed  Google Scholar 

  11. Kanteti R, Nallasura V, Loganathan S et al (2009) PAX5 is expressed in small cell lung cancer and positively regulates c-Met transcription. Lab Invest 89:301–314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Le Treut J, Sault MC, Lena H et al (2013) Multicentre phase II study of cisplatin-etoposide chemotherapy for advanced large-cell neuroendocrine lung carcinoma: the GFPC 0302 study. Ann Oncol 24:1548–1552

    Article  Google Scholar 

  13. Mireskandari M, Abdirad A, Zhang Q et al (2013) Association of small foci of diffuse idiopathic pulmonary neuroendocrine cell hyperplasia (DIPNECH) with adenocarcinoma of the lung. Pathol Res Pract 209:578–584

    Article  CAS  PubMed  Google Scholar 

  14. Nenekidis I, Stathopoulos GT, Anagnostakou V et al (2011) Atypical pulmonary carcinoid tumour in a 28-year-old nonsmoker with Prader-Willi syndrome. Eur Respir J 38:1230–1233

    Article  CAS  PubMed  Google Scholar 

  15. Peifer M, Fernández-Cuesta L, Sos ML et al (2012) Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet 44:1104–1110

    Article  CAS  PubMed  Google Scholar 

  16. Pelosi G, Rodriguez J, Viale G, Rosai J (2005) Typical and atypical pulmonary carcinoid tumor overdiagnosed as small-cell carcinoma on biopsy specimens: a major pitfall in the management of lung cancer patients. Am J Surg Pathol 29:179–187

    Article  PubMed  Google Scholar 

  17. Petersen I, Schnabel PA (2011) Neues zur Lungenpathologie. Bericht der Arbeitsgemeinschaft Pneumopathologie der Deutschen Gesellschaft für Pathologie. Pathologe 32(Suppl 2):351–357

    Article  PubMed  Google Scholar 

  18. Righi L, Volante M, Tavaglione V et al (2010) Somatostatin receptor tissue distribution in lung neuroendocrine tumours: a clinicopathologic and immunohistochemical study of 218 ‚clinically aggressive‘ cases. Ann Oncol 21:548–555

    Article  CAS  PubMed  Google Scholar 

  19. Rindi R, Klersy C, Inzani F et al (2013) Grading the neuroendocrine tumors of the lung: an evidence-based proposal. Endocr Relat Cancer. Endocr Relat Cancer 21:1–16

    Article  PubMed  Google Scholar 

  20. Rossi G, Mengoli MC, Cavazza A et al (2014) Large cell carcinoma of the lung: clinically oriented classification integrating immunohistochemistry and molecular biology. Virchows Arch 464:61–68

    Article  CAS  PubMed  Google Scholar 

  21. Sachithanandan N, Harle RA, Burgess JR (2005) Bronchopulmonary carcinoid in multiple endocrine neoplasia type 1. Cancer 103:509–515

    Article  PubMed  Google Scholar 

  22. Schnabel PA, Petersen I, Junker K (2012) Neueste Aktivitäten in der Pneumopathologie -Bericht der Arbeitgemeinschaft Pneumopathologie der Deutschen Gesellschaft für Pathologie. Pathologe 33(Suppl 2):351–354

    Article  PubMed  Google Scholar 

  23. Sica G, Vazquez MF, Altorki N et al (2008) PAX-5 expression in pulmonary neuroendocrine neoplasms. Am J Clin Pathol 129:556–562

    Article  PubMed  Google Scholar 

  24. Song J, Li M, Tretiakova M et al (2010) Expression patterns of PAX5, c-MET and Paxillin in neuroendocrine tumors of the lung. Arch Pathol Lab Med 134:1702–1705

    PubMed Central  PubMed  Google Scholar 

  25. Sterlacci W, Fiegl M, Hilbe W et al (2009) Clinical relevance of neuroendocrine differentiation in non-small cell lung cancer assessed by immunohistochemistry: a retrospective study on 405 surgically resected cases. Virchows Arch 455:125–132

    Article  CAS  PubMed  Google Scholar 

  26. Travis WD (2010) Advances in neuroendocrine lung tumors. Ann Oncol 21(Suppl 7):vii65–vii71

    Article  PubMed  Google Scholar 

  27. Travis WD (2014) The 2015 WHO classification of lung cancer tumors. Keynote lecture bei der 98. Jahrestagung der Deutschen Gesellschaft für Pathologie vom 12.–15.06.2014, Berlin

  28. Travis WD, Brambilla E, Müller-Hermelink HK et al (2004) Tumors of the lung, pleura thymus and heart, World Health Organization classification of tumors. Pathology and genetics. IARC Press, Lyon

  29. Travis WD, Brambilla E, Noguchi M et al (2011) International association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 6:244–285

    Article  PubMed  Google Scholar 

  30. Thunissen E, Kerr KM, Herth FJF et al (2012) The challenge of NSCLC diagnosis and predictive analysis on small samples. Practical approach of a working group. Lung Cancer 76:1–18

    Article  Google Scholar 

  31. Warth A, Fink L, Fisseler-Eckhoff A et al (2013) Interobserver agreement if proliferation index (Ki-67) outperforms mitotic count in pulmonary carcinoids. Virchows Arch 462:507–513

    Article  CAS  PubMed  Google Scholar 

  32. Warth A, Herpel E, Krysa S et al (2009) Chromosomal instability is more frequent in metastasized than in non-metastasized pulmonary carcinoids but is not a reliable predictor of metastatic potential. Exp Mol Med 41:349–353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Warth A, Krysa S, Zahel T et al (2010) S100 protein positive sustentacular cells in pulmonary carcinoids and thoracic paragangliomas: differential diagnostic and prognostic evaluation. Pathologe 31:379–384

    Article  CAS  PubMed  Google Scholar 

  34. Zahel T, Krysa S, Herpel E et al (2012) Phenoptyping of pulmonary carcinoids and a Ki-67-based grading approach. Virchows Arch 460:299–308

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. P.A. Schnabel und K. Junker weisen auf folgende Beziehung hin: sie haben 2013 an einem Advisory Board der Firma Novartis zur Diagnostik großzelliger neuroendokriner Karzinome teilgenommen. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.A. Schnabel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schnabel, P., Junker, K. Neuroendokrine Tumoren der Lunge. Pathologe 35, 557–564 (2014). https://doi.org/10.1007/s00292-014-1917-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-014-1917-z

Schlüsselwörter

Keywords

Navigation