Der Pathologe

, Volume 34, Supplement 2, pp 201–209 | Cite as

Differenzialdiagnose myelproliferativer Neoplasien

Quantitative NF-E2-Immunhistochemie zur Unterscheidung zwischen essenzieller Thrombozythämie und primärer Myelofibrose
  • K. Aumann
  • A.-V. Frey
  • A.M. May
  • D. Hauschke
  • C. Kreutz
  • J.P. Marx
  • J. Timmer
  • M. Werner
  • H.L. Pahl
Referate Preisträger
  • 255 Downloads

Zusammenfassung

Hintergrund

Die WHO-definierten myeloproliferativen Neoplasien (MPN) umfassen neben der essenziellen Thrombozythämie (ET), der Polycythaemia vera (PV) und der primären Myelofibrose (PMF) auch die Entität der unklassifizierbaren MPN (MPN, U). Tatsächlich ist die exakte Differenzialdiagnose zwischen den MPN-Entitäten v. a. in der frühen Erkrankungsphase eine Herausforderung. Dem Pathologen stehen bislang neben der histomorphologischen Evaluation von Knochenmarktrepanaten im Kontext mit klinischen Daten wie z. B. Laborwerten keine hilfreichen Zusatzuntersuchungen zur Verfügung. In der Unterscheidung zwischen ET und PMF ist selbst die molekularpathologische JAK2-Mutationsanalyse nicht weiterführend, da beide Erkrankungen zu 50 % mit der V617F-Mutation assoziiert sind. Kürzlich wurde in MPN die Überexpression des Transkriptionsfaktors NF-E2 beschrieben

Materialien und Methoden

Ein Kollektiv aus 163 Knochenmarkbiopsien, darunter 139 MPN-Fälle, wurde immunhistochemisch NF-E2-gefärbt und hinsichtlich der subzellulären Lokalisation von NF-E2 in erythroiden Vorläuferzellen analysiert. Die Ergebnisse der MPN-Fälle und Kontrollen wurden miteinander verglichen und statistisch ausgewertet.

Ergebnisse und Diskussion

In dieser Arbeit konnte gezeigt werden, dass die immunhistochemische NF-E2-Färbung mit quantitativer Auswertung des Anteils der nukleär positiven Erythroblasten an der Gesamtheit aller erythroiden Vorläuferzellen eine zuverlässige Unterscheidung zwischen ET und PMF bereits in frühen Stadien zulässt. Ein MPN-U-Fall mit einem Anteil mehr als 20 % nukleär positiver Erythroblasten kann mit einer Genauigkeit von 92 % der PMF zugeordnet werden.

Schlüsselwörter

Myeloproliferative Neoplasien NF-E2 Differenzialdiagnose Präfibrotische primäre Myelofibrose (PMF) Essenzielle Thrombozythämie (ET) 

Differential diagnosis of myeloproliferative neoplasms

Quantitative NF-E2 immunohistochemistry for differentiating between essential thrombocythemia and primary myelofibrosis

Abstract

Background

Besides essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF) the myeloproliferative neoplasms (MPN) defined by the World Health Organization (WHO) comprise the entity of unclassifiable MPNs (MPN, U). The exact differential diagnosis of the specific MPN entities can be challenging particularly at early stages of the diseases. So far, pathologists have had to rely only on histomorphological evaluation of bone marrow biopsies in combination with laboratory data because helpful ancillary tests are not yet available. Even molecular tests, such as JAK2 mutation analysis are not helpful particularly in the differential diagnosis of ET and PMF because both entities are associated with the V617F mutation in 50 % of the cases. Recently overexpression of the transcription factor NF-E2 in MPN was described.

Materials and methods

A collective of samples consisting of 163 bone marrow biopsies including 139 MPN cases was stained immunohistochemically for NF-E2 and analyzed regarding the subcellular localization of NF-E2 in erythroid progenitor cells. The results were compared between the MPN entities as well as the controls and statistical analyses were conducted.

Results and discussion

This study showed that NF-E2 immunohistochemistry and analysis of the proportion of nuclear positive erythroblasts of all erythroid precursor cells can help to distinguish between ET and PMF even in early stages of the diseases. An MPN, U case showing a proportion of more than 20 % nuclear positive erythroblasts can be classified as a PMF with 92 % accuracy.

Keywords

Myeloproliferative neoplasms NF-E2 Differential diagnosis Pre-fibrotic primary myelofibrosis  Essential thrombocythemia 

Notes

Danksagung

Die Autoren bedanken sich herzlich bei Theresa Lowka und Katja Thurig für hervorragende technische Assistenz sowie bei Dr. Heiko Becker und Dr. Jonas Jutzi für kritische Kommentare. Diese Arbeit wurde finanziell unterstützt durch die Medizinische Fakultät der Albert-Ludwigs-Universität Freiburg (AUM843/11, KA), die Deutsche Gesellschaft für Pathologie (KA), The National Cancer Institute (1 PO1 CA108671, HLP) und die Deutsche Forschungsgemeinschaft (Pa 611/6-1, HLP).

Einhaltung ethischer Richtlinien

Interessenkonflikt. K. Aumann, A.-V. Frey, A.M. May, D. Hauschke, C. Kreutz, J.P. Marx, M. Werner, H.L. Pahl geben an, dass kein Interessenkonflikt besteht. Alle angewandten Verfahren stehen im Einklang mit den ethischen Normen der verantwortlichen Kommission für Forschung am Menschen (institutionell und national) und mit der Deklaration von Helsinki von 1975 in der revidierten Fassung von 2008. Alle Patienten wurden erst nach erfolgter Aufklärung und Einwilligung in die Studie eingeschlossen.

Literatur

  1. 1.
    Dameshek W (1951) Some speculations on the myeloproliferative syndromes. Blood 6:372–375PubMedGoogle Scholar
  2. 2.
    Campo E, Swerdlow SH, Harris NL et al (2011) The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood 117:5019–5032. doi: 10.1182/blood-2011-01-293050PubMedCrossRefGoogle Scholar
  3. 3.
    James C, Ugo V, Le Couedic JP et al (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434:1144–1148. doi: 10.1038/nature03546PubMedCrossRefGoogle Scholar
  4. 4.
    Baxter EJ, Scott LM, Campbell PJ et al (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365:1054–1061. doi: S0140-6736(05)71142-9 [pii] 10.1016/S0140-6736(05)71142-9PubMedGoogle Scholar
  5. 5.
    Kralovics R, Passamonti F, Buser AS et al (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352:1779–1790. doi: 352/17/1779 [pii] 10.1056/NEJMoa051113PubMedCrossRefGoogle Scholar
  6. 6.
    Levine RL, Wadleigh M, Cools J et al (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7:387–397. doi: S1535-6108(05)00094-2 [pii] 10.1016/j.ccr.2005.03.023PubMedCrossRefGoogle Scholar
  7. 7.
    Spivak JL (2010) Narrative review: thrombocytosis, polycythemia vera, and JAK2 mutations: the phenotypic mimicry of chronic myeloproliferation. Ann Intern Med 152:300–306. doi: 10.1059/0003-4819-152-5-201003020-00008PubMedCrossRefGoogle Scholar
  8. 8.
    Swerdlow SH, Campo E, Harris NL et al (2008) WHO classification of tumours of haematopoietic and lymphoid tissue. WHO Classification of Tumours 4Google Scholar
  9. 9.
    Jaffe ES, Harris NL, Stein H, Vardiman JW (2001) Pathology and genetics of tumours of hematopoietic and lymphoid tissues. IARC Press, LyonGoogle Scholar
  10. 10.
    Brousseau M, Parot-Schinkel E, Moles M-P et al (2010) Practical application and clinical impact of the WHO histopathological criteria on bone marrow biopsy for the diagnosis of essential thrombocythemia versus prefibrotic primary myelofibrosis. Histopathology 56:758–767. doi: 10.1111/j.1365-2559.2010.03545.xPubMedCrossRefGoogle Scholar
  11. 11.
    Buhr T, Hebeda K, Kaloutsi V et al (2012) European Bone Marrow Working Group trial on reproducibility of World Health Organization criteria to discriminate essential thrombocythemia from prefibrotic primary myelofibrosis. Haematologica 97(3):360-5 – comment. Haematologica 97:360–365. doi: 10.3324/haematol.2011.047811PubMedCrossRefGoogle Scholar
  12. 12.
    Thiele J, Kvasnicka HM, Müllauer L et al (2011) Essential thrombocythemia versus early primary myelofibrosis: a multicenter study to validate the WHO classification. Blood 117:5710–5718. doi: 10.1182/blood-2010-07-293761PubMedCrossRefGoogle Scholar
  13. 13.
    Tefferi A, Vainchenker W (2011) Myeloproliferative neoplasms: molecular pathophysiology, essential clinical understanding, and treatment strategies. J Clin Oncol 29:573–582. doi: 10.1200/JCO.2010.29.8711PubMedCrossRefGoogle Scholar
  14. 14.
    Barbui T, Thiele J, Passamonti F et al (2012) Initial bone marrow reticulin fibrosis in polycythemia vera exerts an impact on clinical outcome. Blood 119:2239–2241. doi: 10.1182/blood-2011-11-393819PubMedCrossRefGoogle Scholar
  15. 15.
    Barbui T, Thiele J, Carobbio A et al (2012) Disease characteristics and clinical outcome in young adults with essential thrombocythemia versus early/prefibrotic primary myelofibrosis. Blood 120:569–571. doi: 10.1182/blood-2012-01-407981PubMedCrossRefGoogle Scholar
  16. 16.
    Barbui T, Thiele J, Passamonti F et al (2011) Survival and disease progression in essential thrombocythemia are significantly influenced by accurate morphologic diagnosis: an international study. J Clin Oncol 29:3179–3184. doi: 10.1200/JCO.2010.34.5298PubMedCrossRefGoogle Scholar
  17. 17.
    Goerttler PS, Kreutz C, Donauer J et al (2005) Gene expression profiling in polycythaemia vera: overexpression of transcription factor NF-E2. Br J Haematol 129:138–150. doi: 10.1111/j.1365-2141.2005.05416.xPubMedCrossRefGoogle Scholar
  18. 18.
    Wang W, Schwemmers S, Hexner EO, Pahl HL (2010) AML1 is overexpressed in patients with myeloproliferative neoplasms and mediates JAK2V617F-independent overexpression of NF-E2. Blood 116:254–266. doi: 10.1182/blood-2009-11-254664PubMedCrossRefGoogle Scholar
  19. 19.
    Kaufmann KB, Gründer A, Hadlich T et al (2012) A novel murine model of myeloproliferative disorders generated by overexpression of the transcription factor NF-E2. J Exp Med 209:35–50. doi: 10.1084/jem.20110540PubMedCrossRefGoogle Scholar
  20. 20.
    Kreft A, Büche G, Ghalibafian M et al (2005) The incidence of myelofibrosis in essential thrombocythaemia, polycythaemia vera and chronic idiopathic myelofibrosis: a retrospective evaluation of sequential bone marrow biopsies. Acta Haematol 113:137–143. doi: 10.1159/000083452PubMedCrossRefGoogle Scholar
  21. 21.
    Cervantes F, Alvarez-Larrán A, Talarn C et al (2002) Myelofibrosis with myeloid metaplasia following essential thrombocythaemia: actuarial probability, presenting characteristics and evolution in a series of 195 patients. Br J Haematol 118:786–790PubMedCrossRefGoogle Scholar
  22. 22.
    Passamonti F, Rumi E, Arcaini L et al (2008) Prognostic factors for thrombosis, myelofibrosis, and leukemia in essential thrombocythemia: a study of 605 patients. Haematologica 93:1645–1651. doi: 10.3324/haematol.13346PubMedCrossRefGoogle Scholar
  23. 23.
    Mufti GJ, Flandrin G, Schaefer H-E et al (1996) An atlas of malignant haematology: cytology, histology, and cytogenetics. Dunitz, London, S 424Google Scholar
  24. 24.
    Efron B, Tibshirani R (1997) Improvements on cross-validation: the 632 + Bootstrap method. J Amer Statistical Assoc 92:548–560. doi: 10.1080/01621459.1997.10474007Google Scholar
  25. 25.
    Wilkins BS, Erber WN, Bareford D et al (2008) Bone marrow pathology in essential thrombocythemia: interobserver reliability and utility for identifying disease subtypes. Blood 111:60–70. doi: 10.1182/blood-2007-05-091850PubMedCrossRefGoogle Scholar
  26. 26.
    Tefferi A (2012) Myeloproliferative neoplasms 2012: the John M. Bennett 80th birthday anniversary lecture. Leuk Res 36:1481–1489. doi: 10.1016/j.leukres.2012.08.011PubMedCrossRefGoogle Scholar
  27. 27.
    Harrison CN, Campbell PJ, Buck G et al (2005) Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med 353:33–45. doi: 10.1056/NEJMoa043800PubMedCrossRefGoogle Scholar
  28. 28.
    Barbui T, Finazzi G (2005) When and how to treat essential thrombocythemia. N Engl J Med 353:85–86. doi: 10.1056/NEJMe058093PubMedCrossRefGoogle Scholar
  29. 29.
    Thiele J, Kvasnicka HM, Vardiman JW et al (2009) Bone marrow fibrosis and diagnosis of essential thrombocythemia. J Clin Oncol 27:e220–e221. doi: 10.1200/JCO.2009.24.3485 (author reply e222–e223)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • K. Aumann
    • 1
  • A.-V. Frey
    • 1
  • A.M. May
    • 1
  • D. Hauschke
    • 2
  • C. Kreutz
    • 3
  • J.P. Marx
    • 4
  • J. Timmer
    • 3
  • M. Werner
    • 1
  • H.L. Pahl
    • 4
  1. 1.Institut für PathologieUniversitätsklinikum FreiburgFreiburgDeutschland
  2. 2.Institut für medizinische Biometrie und InformatikUniversitätsklinikum FreiburgFreiburgDeutschland
  3. 3.Physikalisches Institut und Zentrum für Biosystemanalyse (ZBSA)Universität FreiburgFreiburgDeutschland
  4. 4.Abteilung für molekulare Hämatologie, Zentrum für klinische ForschungUniversitätsklinikum FreiburgFreiburgDeutschland

Personalised recommendations