Advertisement

Der Pathologe

, Volume 34, Issue 5, pp 413–418 | Cite as

Genexpressionsanalysen beim Mammakarzinom

Ein neues diagnostisches Werkzeug in der Pathologie
Schwerpunkt
  • 549 Downloads

Zusammenfassung

Als Grundlage einer individualisierten Therapie kommt der Untersuchung molekularer Biomarker eine immer größere Bedeutung zu. Beim Mammakarzinom werden derzeit standardmäßig die Hormonrezeptoren, HER2 sowie ggf. Ki67 bestimmt. In neuerer Zeit gibt es insbesondere für hormonrezeptorpositive HER2-negative Karzinome eine zusätzliche Möglichkeit der Durchführung von Genexpressionstests. Hier werden innerhalb des Tumors Gene gemessen, die zum einen proliferationsassoziiert sind und zum anderen Informationen über die Aktivität von Hormonrezeptorsignalwegen liefern. In einem standardisierten Verfahren können diese Genexpressionswerte genutzt werden, um Patientinnen zu identifizieren, die unter einer alleinigen antihormonellen Therapie eine sehr gute Prognose haben. Bei dieser Patientengruppe kann dann auf die Chemotherapie verzichtet werden. Der EndoPredict-Test wurde an 2 großen Kohorten aus klinischen Studien der österreichischen Brustkrebsstudiengruppe ABCSG validiert und im Ringversuch in deutschen Instituten für molekulare Pathologie methodisch etabliert. Er kann lokal in der Pathologie durchgeführt werden und bietet Zusatzinformationen zu den bisher verwendeten Prognoseparametern.

Schlüsselwörter

Molekulare Biomarker Prognose Chemotherapie EndoPredict Molekulare Pathologie 

Gene expression analysis in breast cancer

A new diagnostic tool in pathology

Abstract

Molecular biomarker analysis is increasingly being used as a basis for individualized therapy selection. In breast cancer established standard biomarkers are hormone receptors, HER2 and if indicated Ki67. In particular for hormone receptor positive, HER2 negative tumors, gene expression analysis provides additional information on proliferation and hormone receptor signalling. The results of the gene expression tests can be used to identify patients with a very good prognosis under an exclusive endocrine therapy. This group of patients can then be treated without conventional chemotherapy. The EndoPredict assay was validated in two large cohorts from clinical studies of the Austrian breast cancer study group (ABCSG). Furthermore, using a round robin test, the test method was established in several German institutes of molecular pathology. The EndoPredict assay can be carried out in local institutes of pathology and offers additional information to existing standard prognostic parameters.

Keywords

Molecular biomarkers Prognosis Chemotherapy Molecular diagnostics EndoPredict 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt. C. Denkert weist auf folgende Beziehung hin: er ist Mitgründer von Sividon Diagnostics. Alle angewandten Verfahren stehen im Einklang mit den ethischen Normen der verantwortlichen Kommission für Forschung am Menschen (institutionell und national) und mit der Deklaration von Helsinki von 1975 in der revidierten Fassung von 2008. Alle Patienten wurden erst nach erfolgter Aufklärung und Einwilligung in die Studie eingeschlossen.

Literatur

  1. 1.
    Hammond ME, Hayes DF, Dowsett M et al (2010) American Society of Clinical Oncology; College of American Pathologists. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version). Arch Pathol Lab Med 134(7):e48–e72. doi:10.1043/1543-2165-134.7.e48PubMedGoogle Scholar
  2. 2.
    Wolff AC, Hammond ME, Schwartz JN et al (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growthfactor receptor 2 testing in breast cancer. J Clin Oncol 25:118–145PubMedCrossRefGoogle Scholar
  3. 3.
    Hammond ME, Hayes DF, Wolff AC (2011) Clinical Notice for American Society of Clinical Oncology-College of American Pathologists guideline recommendations on ER/PgRand HER2 testing in breast cancer. J Clin Oncol 29(15):e458PubMedCrossRefGoogle Scholar
  4. 4.
    Dowsett M, Nielsen TO, A’Hern R et al (2011) International Ki-67 in Breast Cancer Working Group. Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer Working Group. J Natl Cancer Inst 103(22):1656–1664PubMedCrossRefGoogle Scholar
  5. 5.
    Goldhirsc A, Wood WC, Coates AS et al (2011) Strategies for subtypes dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the primary therapy of early breast cancer 2011. Ann Oncol 22(8):1736–1747CrossRefGoogle Scholar
  6. 6.
    Cheang MC, Chia SK, Voduc D et al (2009) Ki67 index, HER2 status and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 101(10):736–750PubMedCrossRefGoogle Scholar
  7. 7.
    Varga Z, Diebold J, Dommann-Scherrer C et al (2012) How reliable is Ki-67 immunohistochemistry in grade 2 breast carcinomas? A QA study of the Swiss Working Group of Breast- and Gynecopathologists. PLoS One 7(5):e37379PubMedCrossRefGoogle Scholar
  8. 8.
    Zemzoum I, Kates RE, Ross JS et al (2003) Invasion factors uPA/PAI-1 and HER2 status provide independent and complementary information on patient outcome in node-negative breast cancer. J Clin Oncol 21(6):1022–1028PubMedCrossRefGoogle Scholar
  9. 9.
    Filipits M, Rudas M, Jakesz R et al (2011) A new molecular predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional clinical risk factors. Clin Cancer Res 17:6012–6020PubMedCrossRefGoogle Scholar
  10. 10.
    Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826PubMedCrossRefGoogle Scholar
  11. 11.
    Vijver MJ van de, He YD, van t’Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009PubMedCrossRefGoogle Scholar
  12. 12.
    Nielsen TO, Parker JS, Leung S et al (2010) A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer. Clin Cancer Res 16(21):5222–5232. doi:10.1158/1078-0432. CCR-10-1282PubMedCrossRefGoogle Scholar
  13. 13.
    Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J Med 360(8):790–800PubMedCrossRefGoogle Scholar
  14. 14.
    Guiu S, Michiels S, André F et al (2012) Molecular subclasses of breast cancer: how do we define them? The IMPAKT 2012 Working Group Statement. Ann Oncol 23(12):2997–3006PubMedCrossRefGoogle Scholar
  15. 15.
    Weigelt B, Reis-Filho JS, Swanton C (2012) Genomic analyses to select patients for adjuvant chemotherapy: trials and tribulations. Ann Oncol 23(Suppl 10):x211–x218PubMedCrossRefGoogle Scholar
  16. 16.
    Simon RM, Paik S, Hayes DF (2009) Use of archived specimens in evaluation of prognostic and predictive biomarkers. J Natl Cancer Inst 101(21):1446–1452PubMedCrossRefGoogle Scholar
  17. 17.
    Dubsky P, Filipits M, Jakesz R et al (2013) EndoPredict improves the prognostic classification derived from common clinical guidelines in ER-positive, HER2-negative early breast cancer. Ann Oncol 24(3):640–647PubMedCrossRefGoogle Scholar
  18. 18.
    Dubsky P, Brase JC, Fisch K et al (o J) The EndoPredict score identifies late distant metastases in ER +/HER2- breast cancer patients. 2012 San Antonio Breast Cancer Symposium, oral presentation S4–3Google Scholar
  19. 19.
    Denkert C, Kronenwett R, Schlake W et al (2012) Decentral gene expressio nanalysis for ER+/Her2- breast cancer: results of a proficiency testing program fort he EndoPredict assay. Virchows Arch 460(3):251–259PubMedCrossRefGoogle Scholar
  20. 20.
    Bohmann K, Hennig G, Rogel U et al (2009) RNA extraction from archival formalin-fixed paraffin-embedded tissue: a comparison of manual, semiautomated, and fully automated purification methods. Clin Chem 55(9):1719–1727PubMedCrossRefGoogle Scholar
  21. 21.
    Müller BM, Kronenwett R, Hennig G et al (2011) Quantitative determination of estrogen receptor, progesterone receptor, and HER2 mRNA in formalin-fixed paraffin-embedded tissue – a new option for predictive biomarker assessment in breast cancer. Diagn Mol Pathol 20(1):1–10PubMedCrossRefGoogle Scholar
  22. 22.
    Kronenwett R, Bohmann K, Prinzler J et al (2012) Decentral gene expression analysis: analytical validation of the Endopredict genomic multianalyte breast cancer prognosis test. BMC Cancer 12:456PubMedCrossRefGoogle Scholar
  23. 23.
    Denkert C, Loibl S, Kronenwett R et al (2013) RNA-based determination of ESR1 and HER2 expression and response to neoadjuvant chemotherapy. Ann Oncol 24(3):632–639PubMedCrossRefGoogle Scholar
  24. 24.
    Martin M, Brase JC, Ruiz-Borrego M et al (2012) Prognostic performance of the EndoPredict Score in node-positive chemotherapy-treated ER+/HER2- breast cancer patients: results from the GEICAM/9906 trial. 2012 San Antonio Breast Cancer Symposium Poster P2-10-11Google Scholar
  25. 25.
    Azim HA Jr, Michiels S, Zagouri F et al (2013) Utility of prognostic genomic tests in breast cancer practice: The IMPAKT 2012 Working Group Consensus Statement. Ann Oncol 24(3):647–654PubMedCrossRefGoogle Scholar
  26. 26.
    Sparano JA, Paik S (2008) Development of the 21-gene assay and its application in clinical practice and clinical trials. J Clin Oncol 26:721–728PubMedCrossRefGoogle Scholar
  27. 27.
    Cronin M, Sangli C, Liu ML et al (2007) Analytical validation of the Oncotype DX genomic diagnostic test for recurrence prognosis and therapeutic responseprediction in node-negative, estrogen receptor-positive breast cancer. Clin Chem 53:1084–1091PubMedCrossRefGoogle Scholar
  28. 28.
    Bastien RR, Rodríguez-Lescure Á, Ebbert MT et al (2012) PAM50 breast cancer subtyping by RT-qPCR and concordance with standard clinical molecular markers. BMC Med Genomics 5:44PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut für PathologieCharité-Universitätsmedizin Berlin, Campus MitteBerlinDeutschland

Personalised recommendations