Skip to main content
Log in

Myelodysplastische Syndrome

Epidemiologie, molekulare und morphologische Merkmale, Risikostratifizierung

Myelodysplastic syndromes

Epidemiology, molecular and morphological characteristics and risk stratification

  • Schwerpunkt
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Myelodysplastische Syndrome (MDS) umfassen ein Spektrum klonaler hämatopoetischer Stammzellerkrankungen, die nach den Kriterien der 2008 revidierten Klassifikation der WHO eingeordnet werden. Eine Weiterentwicklung ist zu erwarten. Das klinische Krankheitsbild ist durch ungeklärte periphere Zytopenien gekennzeichnet, die zu Anämie, Blutungsereignissen und vermehrter Infektanfälligkeit führen. Das meist hyper-, selten hypozelluläre, gelegentlich auch fibrosierte Knochenmark zeigt Dysplasien in ≥ 10% der Zellen zumindest einer oder aber mehrerer hämatopoetischer Zellreihen. Diese Veränderungen sowie eine gesteigerte Apoptoserate, Stammzellseneszenz und eine immunologische Dysregulation führen zu einer ineffektiven Hämatopoese. Die diagnostische Aufarbeitung sollte komplementäre hämatologische, morphologische und zytogenetische/molekulare Parameter berücksichtigen. Das Methodenspektrum umfasst zytologische Untersuchungen von Blut und Knochenmark, Zytogenetik, Fluoreszenz-in-situ-Hybridisierung (FISH), Beckenkammtrepanate, Immunphänotypisierung und Evaluation molekularer Marker durch etablierte und neue Techniken. Mutationen, die Wachstumsfaktorrezeptoren, Regulatoren von Zellzyklus und Apoptose, intrazelluläre Signalwege, Transkriptionsfaktoren, epigenetische Regulationsmechanismen und das Splicosom betreffen, sind an der MDS-Pathogenese und -Progression beteiligt.

Abstract

Myelodysplastic syndromes (MDS) comprise a spectrum of clonal stem cell disorders which are currently defined according to the classification scheme of the revised 2008 WHO classification but which may be further refined in the future. The clinical presentation is often characterized by unexplained isolated or multiple peripheral blood cytopenias resulting in anemia, bleeding events or increased susceptibility to infections. The generally hypercellular, but rarely hypocellular and occasionally fibrotic bone marrow shows dysplastic features in ≥ 10 % of cells of at least one of the hematopoietic lineages. These features and enhanced apoptosis, stem cell senescence and immunologic dysregulation result in ineffective hematopoiesis. Diagnostics in MDS relies on complementary consideration of hematological, morphological and cytogenetic/molecular parameters. Methods include marrow and peripheral blood cytology, cytogenetics, fluorescence in situ hybridization (FISH), trephine bone marrow biopsy examination, immunophenotyping and the evaluation of molecular markers by established and new techniques. Mutations affecting growth factor receptors, cell cycle and apoptosis regulators, intracellular signaling, transcription factors, epigenetic regulation and the splicosome are involved in MDS pathogenesis and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Brunning RS, Orazi A, Germing U et al (2008) Myelodysplastic syndromes/neoplasms, overview. In: Swerdlow SH, Campo E, Harris NL et al (Hrsg) WHO classification of tumours of haematopoietic and lymphoid tissues. IARC Press, Lyon, S 88–93

  2. Buesche G, Teoman H, Wilczak W et al (2008) Marrow fibrosis predicts early fatal marrow failure in patients with myelodysplastic syndromes. Leukemia 22:313–322

    Article  PubMed  CAS  Google Scholar 

  3. Chen J, Odenike O, Rowley JD (2010). Leukaemogenesis: more than mutant genes. Nat Rev Cancer 2010:23–36

    Article  Google Scholar 

  4. Cheng CL, Hou HA, Jhuang JY (2011) High bone marrow angiopoietin-1 expression is an independent poor prognostic factor for survival in patients with myelodysplastic syndromes. Br J Cancer 105:975–982

    Article  PubMed  CAS  Google Scholar 

  5. Cogle CR, Craig BM, Rollison DE, List AF (2011) Incidence of the myelodysplastic syndromes using a novel claims-based algorithm: high number of uncaptured cases by cancer registries. Blood 117:7121–7125

    Article  PubMed  CAS  Google Scholar 

  6. Della Porta MG, Malcovati L, Boveri E et al (2009) Clinical relevance of bone marrow fibrosis and CD34-positive cell clusters in primary myelodysplastic syndromes. J Clin Oncol 27:754–762

    Article  Google Scholar 

  7. Della Porta MG, Malcovati L (2011) Myelodysplastic syndromes with bone marrow fibrosis. Haematologica 96:180–183

    Article  Google Scholar 

  8. Witte T de, Hagemeijer A, Suciu S (2010) Value of allogeneic versus autologous stem cell transplantation and chemotherapy in patients with myelodysplastic syndromes and secondary acute myeloid leukemia. Final results of a prospective randomized European Intergroup Trial. Haematologica 95:1754–1761

    Article  PubMed  Google Scholar 

  9. Ernst T, Chase AJ, Score J et al (2010) Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 42:722–726

    Article  PubMed  CAS  Google Scholar 

  10. Fenaux P, Giagounidis A, Selleslag D et al (2011) A randomized phase 3 study of lenalidomide versus placebo in RBC transfusion-dependent patients with Low-/Intermediate-1-risk myelodysplastic syndromes with del5q. Blood 118:3765–3776

    Article  PubMed  CAS  Google Scholar 

  11. Flach J, Dicker F, Schnittger S et al (2011) An accumulation of cytogenetic and molecular genetic events characterizes the progression from MDS to secondary AML: an analysis of 38 paired samples analyzed by cytogenetics, molecular mutation analysis and SNP microarray profiling. Leukemia 25:713–718

    Article  PubMed  CAS  Google Scholar 

  12. Fozza C, Longu F, Contini S et al (2012) Patients with early-stage myelodysplastic syndromes show increased frequency of CD4 + CD25 + CD127(low) regulatory T cells. Acta Haematol 128:178–182

    Article  PubMed  CAS  Google Scholar 

  13. Garcia-Manero G (2010) Prognosis of myelodysplastic syndromes. Hematology Am Soc Hematol Educ Program 2010:330–337

    Article  PubMed  Google Scholar 

  14. Garcia-Manero G, Fenaux P (2011) Hypomethylating agents and other novel strategies in myelodysplastic syndromes. J Clin Oncol 29:516–523

    Article  PubMed  CAS  Google Scholar 

  15. Gattermann N, Finelli C, Porta MD et al (2010) Deferasirox in iron-overloaded patients with transfusion-dependent myelodysplastic syndromes: Results from the large 1-year EPIC study. Leuk Res 34:1143–1150

    Article  PubMed  CAS  Google Scholar 

  16. Gelsi-Boyer V, Trouplin V, Adélaide J et al (2009) Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocyticleukaemia. Br J Haematol 145:788–800

    Article  PubMed  CAS  Google Scholar 

  17. Germing U, Kündgen A, Haas R, Gattermann N (2012) Myelodysplastic syndromes (MDS). Dtsch Med Wochenschr 137:183–185

    Article  PubMed  CAS  Google Scholar 

  18. Germing U, Lauseker M, Hildebrandt B (2012) Survival, prognostic factors and rates of leukemic transformation in 381 untreated patients with MDS and del(5q): a multicenter study. Leukemia 26:1286–1292

    Article  PubMed  CAS  Google Scholar 

  19. Graubert T, Walter MJ (2011) Genetics of myelodysplastic syndromes: new insights. Hematology Am Soc Hematol Educ Program 2011:543–549

    Article  PubMed  Google Scholar 

  20. Greenberg P, Cox C, LeBeau MM et al (1997) International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89:2079–2088

    PubMed  CAS  Google Scholar 

  21. Greenberg P, Tuechler H, Schanz J et al (2011) Revised International Prognostic Scoring System (IPSS-R), developed by the International Prognostic Working Group for Prognosis in MDS (lWG-PM). Leuk Res 35:6

    Article  Google Scholar 

  22. Haase D, Germing U, Schanz J et al (2007) New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2,124 patients. Blood 110:4385–4395

    Article  PubMed  CAS  Google Scholar 

  23. Hasle H, Niemeyer CM (2011) Advances in the prognostication and management of advanced MDS in children. Br J Haematol 154:185–195

    Article  PubMed  Google Scholar 

  24. Haferlach C, Bacher U, Haferlach T (2011) The inv(3)(q21q26)/t(3;3)(q21;q26) is frequently accompanied by alterations of the RUNX1, KRAS and NRAS and NF1 genes and mediates adverse prognosis both in MDS and in AML: a study in 39 cases of MDS or AML. Leukemia 25:874–877

    Article  PubMed  CAS  Google Scholar 

  25. Haferlach T (2012) Molecular genetics in myelodysplastic syndromes. Leuk Res 36:1459–1462

    Article  PubMed  CAS  Google Scholar 

  26. Itzykson R, Kosmider O, Cluzeau T (2011) Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias. Leukemia 25:1147–1152

    Article  PubMed  CAS  Google Scholar 

  27. Itzykson R, Fenaux P (2012) Optimizing hypomethylating agents in myelodysplastic syndromes. Curr Opin Hematol 19:65–70

    Article  PubMed  CAS  Google Scholar 

  28. Joeckel TE, Lübbert M (2012) Clinical results with the DNA hypomethylating agent 5-aza-2’-deoxycytidine (decitabine) in patients with myelodysplastic syndromes: an update. Semin Hematol 49:330–341

    Article  PubMed  CAS  Google Scholar 

  29. Ma X (2012) Epidemiology of myelodysplastic syndromes. Am J Med 125(7 Suppl):2–5

    Article  Google Scholar 

  30. Maassen A, Strupp C, Giagounidis A et al (2013) Validation and proposals for a refinement of the WHO 2008 classification of myelodysplastic syndromes without excess of blasts. Leuk Res 37:64–70.

    Article  PubMed  Google Scholar 

  31. Malcovati L, Germing U, Kuendgen A et al (2007) Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes. J Clin Oncol 25:3503–3510

    Article  PubMed  Google Scholar 

  32. Malcovati L (2007) Impact of transfusion dependency and secondary iron overload on the survival of patients with myelodysplastic syndromes. Leuk Res 31(Suppl 3):2–6

    Article  Google Scholar 

  33. Malcovati L, Papaemmanuil E, Bowen DT et al (2011) Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood 118:6239–6246

    Article  PubMed  CAS  Google Scholar 

  34. Murati A, Brecqueville M, Devillier R et al (2012) Myeloid malignancies: mutations, models and management. BMC Cancer 23:304–334

    Article  Google Scholar 

  35. Neukirchen J, Schoonen WM, Strupp C (2011) Incidence and prevalence of myelodysplastic syndromes: data from the Düsseldorf MDS-registry. Leuk Res 35:1591–1596

    Article  PubMed  Google Scholar 

  36. Niemeyer CM, Baumann I (2011) Classification of childhood aplastic anemia and myelodysplastic syndrome. Hematology Am Soc Hematol Educ Program 2011:84–89

    Article  PubMed  Google Scholar 

  37. Nikoloski G, Reijden BA van der, Jansen JH (2012) Mutations in epigenetic regulators in myelodysplastic syndromes. Int J Hematol 95:8–16

    Article  PubMed  Google Scholar 

  38. Nimer M (2008) Myelodysplastic syndromes. Blood 111:4841–4851

    Article  PubMed  CAS  Google Scholar 

  39. Nolte F, Hofmann WK (2010) Molecular mechanisms involved in the progression of myelodysplastic syndrome. Future Oncol 6:445–455

    Article  PubMed  CAS  Google Scholar 

  40. Passweg JR, Giagounidis AA, Simcock M et al (2011) Immunosuppressive therapy for patients with myelodysplastic syndrome: a prospective randomized multicenter phase III trial comparing antithymocyte globulin plus cyclosporine with best supportive care – SAKK 33/99. J Clin Oncol 29:303–309

    Article  PubMed  CAS  Google Scholar 

  41. Patnaik MM, Lasho TL, Hodnefield JM et al (2012) SF3B1 mutations are prevalent in myelodysplastic syndromes with ring sideroblasts but do not hold independent prognostic value. Blood 119:569–572

    Article  PubMed  CAS  Google Scholar 

  42. Reindl C, Quentmeier H, Petropoulos K (2009) CBL exon 8/9 mutants activate the FLT3 pathway and cluster in core binding factor/11q deletion acute myeloid leukemia/myelodysplastic syndrome subtypes. Clin Cancer Res 15:2238–2247

    Article  PubMed  CAS  Google Scholar 

  43. Schanz J, Steidl C, Fonatsch C (2011) Coalesced multicentric analysis of 2,351 patients with myelodysplastic syndromes indicates an underestimation of poor-risk cytogenetics of myelodysplastic syndromes in the international prognostic scoring system. J Clin Oncol 29:1963–1970

    Article  PubMed  Google Scholar 

  44. Schanz J, Tüchler H, Solé F (2012) New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an international database merge. J Clin Oncol 30:820–829

    Article  PubMed  Google Scholar 

  45. Schmitt-Graeff A, Mattern D, Köhler H et al (2000) Myelodysplastic syndromes (MDS). Aspects of hematopathologic diagnosis. Pathologe 21:1–15

    Article  PubMed  CAS  Google Scholar 

  46. Schmitt-Graeff AH, Teo SS, Olschewski M (2008) JAK2V617F mutation status identifies subtypes of refractory anemia with ringed sideroblasts associated with marked thrombocytosis. Haematologica 93:34–40

    Article  PubMed  CAS  Google Scholar 

  47. Sebaa A, Ades L, Baran-Marzack F et al (2012) Incidence of 17p deletions and TP53 mutation in myelodysplastic syndrome and acute myeloid leukemia with 5q deletion. Genes Chromosomes Cancer 51:1086–1092

    Article  PubMed  CAS  Google Scholar 

  48. Shenoy N, Kessel R, Bhagat TD (2012) Alterations in the ribosomal machinery in cancer and hematologic disorders. J Hematol Oncol 5:32

    Article  PubMed  CAS  Google Scholar 

  49. Steensma DP (2012) Dysplasia has a differential diagnosis: distinguishing genuine myelodysplastic syndromes (MDS) from mimics, imitators, copycats and impostors. Curr Hematol Malig Rep 7:310–320

    Article  PubMed  Google Scholar 

  50. Steensma DP (2012) Historical perspectives on myelodysplastic syndromes. Leuk Res 36:1441–1452

    Article  PubMed  Google Scholar 

  51. Quintás-Cardama A, Ravandi F, Liu-Dumlao T et al (2012) Epigenetic therapy is associated with similar survival compared with intensive chemotherapy in older patients with newly diagnosed acute myeloid leukemia. Blood 120:4840–4845.

    Article  PubMed  Google Scholar 

  52. Valent P, Bain BJ, Bennett JM et al (2012) Idiopathic cytopenia of undetermined significance (ICUS) and idiopathic dysplasia of uncertain significance (IDUS), and their distinction from low risk MDS. Leuk Res 36:1–5

    PubMed  Google Scholar 

  53. Valent P, Orazi A, Büsche G et al (2010) Standards and impact of hematopathology in myelodysplastic syndromes (MDS). Oncotarget 1:483–496

    PubMed  Google Scholar 

  54. Loosdrecht AA van de, Ireland R, Kern W et al (2012) Rationale for the clinical application of flow cytometry in patients with myelodysplastic syndromes: position paper of an International Consortium and the European LeukemiaNet Working Group. Leuk Lymphoma (Epub ahead of print)

  55. Visconte V, Rogers HJ, Singh J (2012) SF3B1 haploinsufficiency leads to formation of ring sideroblasts in myelodysplastic syndromes. Blood 120:3173–3186

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Keine Angaben.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.H. Schmitt-Graeff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitt-Graeff, A., Müller, M. & Fisch, P. Myelodysplastische Syndrome. Pathologe 34, 45–55 (2013). https://doi.org/10.1007/s00292-012-1707-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-012-1707-4

Schlüsselwörter

Keywords

Navigation