Skip to main content
Log in

Chronische Herzinsuffizienz

Partielle Reversibilität durch linksventrikuläre mechanische Unterstützungssysteme

Congestive heart failure

Reverse cardiac remodeling mediated by left ventricular assist devices

  • Schwerpunkt
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Linksventrikuläre mechanische Unterstützungssysteme („left ventricular assist devices”; LVAD) werden bei terminaler Herzinsuffizienz entweder als „bridge to transplantation“ oder als „destination therapy“ bei Vorliegen von Kontraindikationen zur Herztransplantation eingesetzt. LVAD sind pulsatile oder nonpulsatile Systeme, die Blut vom linken Ventrikel parallel zur Zirkulation in die Aorta ascendens transportieren und so zu einer profunden Druck- und Volumenentlastung im linken Ventrikel führen. Bei einem Teil der Patienten kommt es infolge des Einsatzes des LVAD zu einer deutlichen Abnahme der Herzhypertrophie und -dilatation sowie zu einer signifikanten Verbesserung der kardialen Pumpfunktion. Dieser Prozess wird als „reverse cardiac remodeling” bezeichnet und ist durch Abnahme der Kardiomyozytengröße und reversible Regulation zahlreicher molekularer Systeme des Myokards gekennzeichnet.

Abstract

Left ventricular assist devices (LVAD) are currently used to treat patients with terminal congestive heart failure as a bridge to transplantation or as destination therapy in individuals with contraindications for cardiac transplantation. The LVADs are pulsatile or non-pulsatile systems that transport blood from the left ventricle to the ascending aorta parallel to the circulation thus providing a profound volume and pressure reduction in the left ventricle. The use of LVADs is associated with a considerable decrease of cardiac hypertrophy and dilation with significantly improved cardiac performance in a small subset of patients. The underlying process is termed reverse cardiac remodelling and is characterized by a significant decrease in the size of cardiomyocytes and reversible regulation of numerous molecular systems in the myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Hunt SA, Abraham WT, Chin MH et al (2009) 2009 Focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults a report of the American college of cardiology foundation/american heart association task force on practice guidelines developed in collaboration with the international society for heart and lung transplantation. J Am Coll Cardiol 53:e1–e90

    Article  PubMed  Google Scholar 

  2. Jessup M, Brozena S (2003) Heart failure. N Engl J Med 348:2007–2018

    Article  PubMed  Google Scholar 

  3. Kirklin JK, Naftel DC, Kormos RL et al (2010) Second INTERMACS annual report: more than 1,000 primary left ventricular assist device implants. J Heart Lung Transplant 29:1–10

    Article  PubMed  Google Scholar 

  4. Frazier OH, Benedict CR, Radovancevic B et al (1996) Improved left ventricular function after chronic left ventricular unloading. Ann Thorac Surg 62:675–681

    Article  PubMed  CAS  Google Scholar 

  5. Mancini DM, Beniaminovitz A, Levin H et al (1998) Low incidence of myocardial recovery after left ventricular assist device implantation in patients with chronic heart failure. Circulation 98:2383–2389

    PubMed  CAS  Google Scholar 

  6. Wohlschlaeger J, Schmitz KJ, Schmid C et al (2005) Reverse remodeling following insertion of left ventricular assist devices (LVAD): a review of the morphological and molecular changes. Cardiovasc Res 68:376–386

    Article  PubMed  CAS  Google Scholar 

  7. Zafeiridis A, Jeevanandam V, Houser SR, Margulies KB (1998) Regression of cellular hypertrophy after left ventricular assist device support. Circulation 98:656–662

    PubMed  CAS  Google Scholar 

  8. Mann DL (1999) Mechanisms and models in heart failure: a combinatorial approach. Circulation 100:999–1008

    PubMed  CAS  Google Scholar 

  9. van Empel VP, De Windt LJ (2004) Myocyte hypertrophy and apoptosis: a balancing act. Cardiovasc Res 63:487–99

    Article  Google Scholar 

  10. Empel VP van, Bertrand AT, Hofstra L et al (2005) Myocyte apoptosis in heart failure. Cardiovasc Res 67:21–29

    Article  PubMed  Google Scholar 

  11. Catena E, Milazzo F (2007) Echocardiography and cardiac assist devices. Minerva Cardioangiol 55:247–265

    PubMed  CAS  Google Scholar 

  12. Scheinin SA, Capek P, Radovancevic B et al (1992) The effect of prolonged left ventricular support on myocardial histopathology in patients with end-stage cardiomyopathy. ASAIO J 38:M271–M274

    Article  PubMed  CAS  Google Scholar 

  13. Baba HA, Grabellus F, August C et al (2000) Reversal of metallothionein expression is different throughout the human myocardium after prolonged left-ventricular mechanical support. J Heart Lung Transplant 19:668–674

    Article  PubMed  CAS  Google Scholar 

  14. Bruckner BA, Razeghi P, Stetson S et al (2004) Degree of cardiac fibrosis and hypertrophy at time of implantation predicts myocardial improvement during left ventricular assist device support. J Heart Lung Transplant 23:36–42

    Article  PubMed  Google Scholar 

  15. Li YY, Feldman AM, Sun Y, McTiernan CF (1998) Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation 98:1728–1734

    PubMed  CAS  Google Scholar 

  16. Li YY, Feng Y, McTiernan CF et al (2001) Downregulation of matrix metalloproteinases and reduction in collagen damage in the failing human heart after support with left ventricular assist devices. Circulation 104:1147–1152

    Article  PubMed  CAS  Google Scholar 

  17. Hajjar RJ, Muller FU, Schmitz W et al (1998) Molecular aspects of adrenergic signal transduction in cardiac failure. J Mol Med 76:747–755

    Article  PubMed  CAS  Google Scholar 

  18. Ogletree-Hughes ML, Stull LB, Sweet WE et al (2001) Mechanical unloading restores beta-adrenergic responsiveness and reverses receptor downregulation in the failing human heart. Circulation 104:881–886

    Article  PubMed  CAS  Google Scholar 

  19. Kuhn M (2003) Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A. Circ Res 93:700–709

    Article  PubMed  CAS  Google Scholar 

  20. Kuhn M, Voss M, Mitko D et al (2004) Left ventricular assist device support reverses altered cardiac expression and function of natriuretic peptides and receptors in end-stage heart failure. Cardiovasc Res 64:308–314

    Article  PubMed  CAS  Google Scholar 

  21. Blaschko H, Comline RS, Schneider FH et al (1967) Secretion of a chromaffin granule protein, chromogranin, from the adrenal gland after splanchnic stimulation. Nature 215:58–59

    Article  PubMed  CAS  Google Scholar 

  22. Imbrogno S, Angelone T, Corti A et al (2004) Influence of vasostatins, the chromogranin A-derived peptides, on the working heart of the eel (Anguilla anguilla): negative inotropy and mechanism of action. Gen Comp Endocrinol 139:20–28

    Article  PubMed  CAS  Google Scholar 

  23. Wohlschlaeger J, von Winterfeld M, Milting H et al (2008) Decreased myocardial chromogranin a expression and colocalization with brain natriuretic peptide during reverse cardiac remodeling after ventricular unloading. J Heart Lung Transplant 27:442–449

    Article  PubMed  Google Scholar 

  24. Yndestad A, Damas JK, Oie E et al (2006) Systemic inflammation in heart failure – the whys and wherefores. Heart Fail Rev 11:83–92

    Article  PubMed  CAS  Google Scholar 

  25. Wong SC, Fukuchi M, Melnyk P et al (1998) Induction of cyclooxygenase-2 and activation of nuclear factor-kappaB in myocardium of patients with congestive heart failure. Circulation 98:100–103

    PubMed  CAS  Google Scholar 

  26. Toker A, Cantley LC (1997) Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 387:673–676

    Article  PubMed  CAS  Google Scholar 

  27. Leng J, Han C, Demetris AJ et al (2003) Cyclooxygenase-2 promotes hepatocellular carcinoma cell growth through Akt activation: evidence for Akt inhibition in celecoxib-induced apoptosis. Hepatology 38:756–768

    Article  PubMed  CAS  Google Scholar 

  28. Wohlschlaeger J, Schmitz KJ, Palatty J et al (2007) Roles of cyclooxygenase-2 and phosphorylated Akt (Thr 308) in cardiac hypertrophy regression mediated by left-ventricular unloading. J Thorac Cardiovasc Surg 133:37–43

    Article  PubMed  CAS  Google Scholar 

  29. Baba HA, Wohlschlaeger J (2008) Morphological and molecular changes of the myocardium after left ventricular mechanical support. Curr Cardiol Rev 4(3):157–169

    Article  PubMed  CAS  Google Scholar 

  30. Michel MC, Li Y, Heusch G (2001) Mitogen-activated protein kinases in the heart. Naunyn Schmiedebergs Arch Pharmacol 363:245–266

    Article  PubMed  CAS  Google Scholar 

  31. Frey N, McKinsey TA, Olson EN (2000) Decoding calcium signals involved in cardiac growth and function. Nat Med 6:1221–1227

    Article  PubMed  CAS  Google Scholar 

  32. Shioi T, McMullen JR, Kang PM et al (2002) Akt/protein kinase B promotes organ growth in transgenic mice. Mol Cell Biol 22:2799–809

    Article  PubMed  CAS  Google Scholar 

  33. Sugden PH, Clerk A (1998) „Stress-responsive“ mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res 83:345–352

    PubMed  CAS  Google Scholar 

  34. Baba HA, Stypmann J, Grabellus F et al (2003) Dynamic regulation of MEK/Erks and Akt/GSK-3beta in human end-stage heart failure after left ventricular mechanical support: myocardial mechanotransduction-sensitivity as a possible molecular mechanism. Cardiovasc Res 59:390–399

    Article  PubMed  CAS  Google Scholar 

  35. Willis MS, Patterson C (2006) Into the heart: the emerging role of the ubiquitin-proteasome system. J Mol Cell Cardiol 41:567–579

    Article  PubMed  CAS  Google Scholar 

  36. Mikecz A von (2006) The nuclear ubiquitin-proteasome system. J Cell Sci 119:1977–1984

    Article  Google Scholar 

  37. Busk PK, Bartkova J, Strom CC et al (2002) Involvement of cyclin D activity in left ventricle hypertrophy in vivo and in vitro. Cardiovasc Res 56:64–75

    Article  PubMed  CAS  Google Scholar 

  38. Weekes J, Morrison K, Mullen A et al (2003) Hyperubiquitination of proteins in dilated cardiomyopathy. Proteomics 3:208–216

    Article  PubMed  CAS  Google Scholar 

  39. Wohlschlaeger J, Sixt SU, Stoeppler T et al (2010) Ventricular unloading is associated with increased 20 s proteasome protein expression in the myocardium. J Heart Lung Transplant 29:125–132

    Article  PubMed  Google Scholar 

  40. Anversa P, Kajstura J (1998) Ventricular myocytes are not terminally differentiated in the adult mammalian heart. Circ Res 83:1–14

    PubMed  CAS  Google Scholar 

  41. Meckert PC, Rivello HG, Vigliano C et al (2005) Endomitosis and polyploidization of myocardial cells in the periphery of human acute myocardial infarction. Cardiovasc Res 67:116–123

    Article  PubMed  CAS  Google Scholar 

  42. Sandritter W, Scomazzoni G (1964) Deoxyribonucleic acid content(Feulgen photometry) and dry weight (interference microscopy) of normal and hypertrophic heart muscle fibers. Nature 202:100–101

    Article  PubMed  CAS  Google Scholar 

  43. Wohlschlaeger J, Levkau B, Brockhoff G et al (2010) Hemodynamic support by left ventricular assist devices reduces cardiomyocyte DNA content in the failing human heart. Circulation 121:989–996

    Article  PubMed  CAS  Google Scholar 

  44. Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  PubMed  CAS  Google Scholar 

  45. Guan K, Hasenfuss G (2007) Do stem cells in the heart truly differentiate into cardiomyocytes? J Mol Cell Cardiol 43:377–387

    Article  PubMed  CAS  Google Scholar 

  46. Goodell MA, Rosenzweig M, Kim H et al (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3:1337–1345

    Article  PubMed  CAS  Google Scholar 

  47. Jackson KA, Majka SM, Wang H et al (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107:1395–1402

    Article  PubMed  CAS  Google Scholar 

  48. Kassiotis C, Ballal K, Wellnitz K et al (2009) Markers of autophagy are downregulated in failing human heart after mechanical unloading. Circulation 120:191–197

    Article  Google Scholar 

  49. Kato TS, Chokshi A, Singh P et al (2011) Effects of continuous-flow versus pulsatile-flow left ventricular assist devices on myocardial unloading and remodeling. Circ Heart Fail 4:546–453

    Article  PubMed  Google Scholar 

  50. Schipper ME, Scheenstra MR, van KJ et al (2011) Osteopontin: a potential biomarker for heart failure and reverse remodeling after left ventricular assist device support. J Heart Lung Transplant 30:805–810

    Article  PubMed  Google Scholar 

  51. Stansfield WE, Andersen NM, Tang RH et al (2009) Periostin is a novel factor in cardiac remodeling after experimental and clinical unloading of the failing heart. Ann Thorac Surg 88:1916–1921

    Article  PubMed  Google Scholar 

  52. Sareyyupoglu B, Boilson BA, Durham LA et al (2010) B-type natriuretic peptide levels and continuous-flow left ventricular assist devices. ASAIO J 56:527–531

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Keine Angaben.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wohlschläger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wohlschläger, J., Milting, H., Stypmann, J. et al. Chronische Herzinsuffizienz. Pathologe 33, 175–182 (2012). https://doi.org/10.1007/s00292-011-1559-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-011-1559-3

Schlüsselwörter

Keywords

Navigation